FPGA Mining: Field Programmable Gate Arrays Crypto Guide ...

The Problem with PoW

The Problem with PoW
Miners have always had it rough..
"Frustrated Miners"

The Problem with PoW
(and what is being done to solve it)

Proof of Work (PoW) is one of the most commonly used consensus mechanisms entrusted to secure and validate many of today’s most successful cryptocurrencies, Bitcoin being one. Battle-hardened and having weathered the test of time, Bitcoin has demonstrated the undeniable strength and reliability of the PoW consensus model through sheer market saturation, and of course, its persistency.
In addition to the cost of powerful computing hardware, miners prove that they are benefiting the network by expending energy in the form of electricity, by solving and hashing away complex math problems on their computers, utilizing any suitable tools that they have at their disposal. The mathematics involved in securing proof of work revolve around unique algorithms, each with their own benefits and vulnerabilities, and can require different software/hardware to mine depending on the coin.
Because each block has a unique and entirely random hash, or “puzzle” to solve, the “work” has to be performed for each block individually and the difficulty of the problem can be increased as the speed at which blocks are solved increases.

Hashrates and Hardware Types

While proof of work is an effective means of securing a blockchain, it inherently promotes competition amongst miners seeking higher and higher hashrates due to the rewards earned by the node who wins the right to add the next block. In turn, these higher hash rates benefit the blockchain, providing better security when it’s a result of a well distributed/decentralized network of miners.
When Bitcoin first launched its genesis block, it was mined exclusively by CPUs. Over the years, various programmers and developers have devised newer, faster, and more energy efficient ways to generate higher hashrates; some by perfecting the software end of things, and others, when the incentives are great enough, create expensive specialized hardware such as ASICs (application-specific integrated circuit). With the express purpose of extracting every last bit of hashing power, efficiency being paramount, ASICs are stripped down, bare minimum, hardware representations of a specific coin’s algorithm.
This gives ASICS a massive advantage in terms of raw hashing power and also in terms of energy consumption against CPUs/GPUs, but with significant drawbacks of being very expensive to design/manufacture, translating to a high economic barrier for the casual miner. Due to the fact that they are virtual hardware representations of a single targeted algorithm, this means that if a project decides to fork and change algorithms suddenly, your powerful brand-new ASIC becomes a very expensive paperweight. The high costs in developing and manufacturing ASICs and the associated risks involved, make them unfit for mass adoption at this time.
Somewhere on the high end, in the vast hashrate expanse created between GPU and ASIC, sits the FPGA (field programmable gate array). FPGAs are basically ASICs that make some compromises with efficiency in order to have more flexibility, namely they are reprogrammable and often used in the “field” to test an algorithm before implementing it in an ASIC. As a precursor to the ASIC, FPGAs are somewhat similar to GPUs in their flexibility, but require advanced programming skills and, like ASICs, are expensive and still fairly uncommon.

2 Guys 1 ASIC

One of the issues with proof of work incentivizing the pursuit of higher hashrates is in how the network calculates block reward coinbase payouts and rewards miners based on the work that they have submitted. If a coin generated, say a block a minute, and this is a constant, then what happens if more miners jump on a network and do more work? The network cannot pay out more than 1 block reward per 1 minute, and so a difficulty mechanism is used to maintain balance. The difficulty will scale up and down in response to the overall nethash, so if many miners join the network, or extremely high hashing devices such as ASICs or FPGAs jump on, the network will respond accordingly, using the difficulty mechanism to make the problems harder, effectively giving an edge to hardware that can solve them faster, balancing the network. This not only maintains the block a minute reward but it has the added side-effect of energy requirements that scale up with network adoption.
Imagine, for example, if one miner gets on a network all alone with a CPU doing 50 MH/s and is getting all 100 coins that can possibly be paid out in a day. Then, if another miner jumps on the network with the same CPU, each miner would receive 50 coins in a day instead of 100 since they are splitting the required work evenly, despite the fact that the net electrical output has doubled along with the work. Electricity costs miner’s money and is a factor in driving up coin price along with adoption, and since more people are now mining, the coin is less centralized. Now let’s say a large corporation has found it profitable to manufacture an ASIC for this coin, knowing they will make their money back mining it or selling the units to professionals. They join the network doing 900 MH/s and will be pulling in 90 coins a day, while the two guys with their CPUs each get 5 now. Those two guys aren’t very happy, but the corporation is. Not only does this negatively affect the miners, it compromises the security of the entire network by centralizing the coin supply and hashrate, opening the doors to double spends and 51% attacks from potential malicious actors. Uncertainty of motives and questionable validity in a distributed ledger do not mix.
When technology advances in a field, it is usually applauded and welcomed with open arms, but in the world of crypto things can work quite differently. One of the glaring flaws in the current model and the advent of specialized hardware is that it’s never ending. Suppose the two men from the rather extreme example above took out a loan to get themselves that ASIC they heard about that can get them 90 coins a day? When they join the other ASIC on the network, the difficulty adjusts to keep daily payouts consistent at 100, and they will each receive only 33 coins instead of 90 since the reward is now being split three ways. Now what happens if a better ASIC is released by that corporation? Hopefully, those two guys were able to pay off their loans and sell their old ASICs before they became obsolete.
This system, as it stands now, only perpetuates a never ending hashrate arms race in which the weapons of choice are usually a combination of efficiency, economics, profitability and in some cases control.

Implications of Centralization

This brings us to another big concern with expensive specialized hardware: the risk of centralization. Because they are so expensive and inaccessible to the casual miner, ASICs and FPGAs predominantly remain limited to a select few. Centralization occurs when one small group or a single entity controls the vast majority hash power and, as a result, coin supply and is able to exert its influence to manipulate the market or in some cases, the network itself (usually the case of dishonest nodes or bad actors).
This is entirely antithetical of what cryptocurrency was born of, and since its inception many concerted efforts have been made to avoid centralization at all costs. An entity in control of a centralized coin would have the power to manipulate the price, and having a centralized hashrate would enable them to affect network usability, reliability, and even perform double spends leading to the demise of a coin, among other things.
The world of crypto is a strange new place, with rapidly growing advancements across many fields, economies, and boarders, leaving plenty of room for improvement; while it may feel like a never-ending game of catch up, there are many talented developers and programmers working around the clock to bring us all more sustainable solutions.

The Rise of FPGAs

With the recent implementation of the commonly used coding language C++, and due to their overall flexibility, FPGAs are becoming somewhat more common, especially in larger farms and in industrial setting; but they still remain primarily out of the hands of most mining enthusiasts and almost unheard of to the average hobby miner. Things appear to be changing though, one example of which I’ll discuss below, and it is thought by some, that soon we will see a day when mining with a CPU or GPU just won’t cut it any longer, and the market will be dominated by FPGAs and specialized ASICs, bringing with them efficiency gains for proof of work, while also carelessly leading us all towards the next round of spending.
A perfect real-world example of the effect specialized hardware has had on the crypto-community was recently discovered involving a fairly new project called VerusCoin and a fairly new, relatively more economically accessible FPGA. The FPGA is designed to target specific alt-coins whose algo’s do not require RAM overhead. It was discovered the company had released a new algorithm, kept secret from the public, which could effectively mine Verus at 20x the speed of GPUs, which were the next fastest hardware types mining on the Verus network.
Unfortunately this was done with a deliberately secret approach, calling the Verus algorithm “Algo1” and encouraging owners of the FPGA to never speak of the algorithm in public channels, admonishing a user when they did let the cat out of the bag. The problem with this business model is that it is parasitic in nature. In an ecosystem where advancements can benefit the entire crypto community, this sort of secret mining approach also does not support the philosophies set forth by the Bitcoin or subsequent open source and decentralization movements.
Although this was not done in the spirit of open source, it does hint to an important step in hardware innovation where we could see more efficient specialized systems within reach of the casual miner. The FPGA requires unique sets of data called a bitstream in order to be able to recognize each individual coin’s algorithm and mine them. Because it’s reprogrammable, with the support of a strong development team creating such bitstreams, the miner doesn’t end up with a brick if an algorithm changes.

All is not lost thanks to.. um.. Technology?

Shortly after discovering FPGAs on the network, the Verus developers quickly designed, tested, and implemented a new, much more complex and improved algorithm via a fork that enabled Verus to transition smoothly from VerusHash 1.0 to VerusHash 2.0 at block 310,000. Since the fork, VerusHash 2.0 has demonstrated doing exactly what it was designed for- equalizing hardware performance relative to the device being used while enabling CPUs (the most widely available “ASICs”) to mine side by side with GPUs, at a profit and it appears this will also apply to other specialized hardware. This is something no other project has been able to do until now. Rather than pursue the folly of so many other projects before it- attempting to be “ASIC proof”, Verus effectively achieved and presents to the world an entirely new model of “hardware homogeny”. As the late, great, Bruce Lee once said- “Don’t get set into one form, adapt it and build your own, and let it grow, be like water.”
In the design of VerusHash 2.0, Verus has shown it doesn’t resist progress like so many other new algorithms try to do, it embraces change and adapts to it in the way that water becomes whatever vessel it inhabits. This new approach- an industry first- could very well become an industry standard and in doing so, would usher in a new age for proof of work based coins. VerusHash 2.0 has the potential to correct the single largest design flaw in the proof of work consensus mechanism- the ever expanding monetary and energy requirements that have plagued PoW based projects since the inception of the consensus mechanism. Verus also solves another major issue of coin and net hash centralization by enabling legitimate CPU mining, offering greater coin and hashrate distribution.
Digging a bit deeper it turns out the Verus development team are no rookies. The lead developer Michael F Toutonghi has spent decades in the field programming and is a former Vice President and Technical Fellow at Microsoft, recognized founder and architect of Microsoft's .Net platform, ex-Technical Fellow of Microsoft's advertising platform, ex-CTO, Parallels Corporation, and an experienced distributed computing and machine learning architect. The project he helped create employs and makes use of a diverse myriad of technologies and security features to form one of the most advanced and secure cryptocurrency to date. A brief description of what makes VerusCoin special quoted from a community member-
"Verus has a unique and new consensus algorithm called Proof of Power which is a 50% PoW/50% PoS algorithm that solves theoretical weaknesses in other PoS systems (Nothing at Stake problem for example) and is provably immune to 51% hash attacks. With this, Verus uses the new hash algorithm, VerusHash 2.0. VerusHash 2.0 is designed to better equalize mining across all hardware platforms, while favoring the latest CPUs over older types, which is also one defense against the centralizing potential of botnets. Unlike past efforts to equalize hardware hash-rates across different hardware types, VerusHash 2.0 explicitly enables CPUs to gain even more power relative to GPUs and FPGAs, enabling the most decentralizing hardware, CPUs (due to their virtually complete market penetration), to stay relevant as miners for the indefinite future. As for anonymity, Verus is not a "forced private", allowing for both transparent and shielded (private) transactions...and private messages as well"

If other projects can learn from this and adopt a similar approach or continue to innovate with new ideas, it could mean an end to all the doom and gloom predictions that CPU and GPU mining are dead, offering a much needed reprieve and an alternative to miners who have been faced with the difficult decision of either pulling the plug and shutting down shop or breaking down their rigs to sell off parts and buy new, more expensive hardware…and in so doing present an overall unprecedented level of decentralization not yet seen in cryptocurrency.
Technological advancements led us to the world of secure digital currencies and the progress being made with hardware efficiencies is indisputably beneficial to us all. ASICs and FPGAs aren’t inherently bad, and there are ways in which they could be made more affordable and available for mass distribution. More than anything, it is important that we work together as communities to find solutions that can benefit us all for the long term.

In an ever changing world where it may be easy to lose sight of the real accomplishments that brought us to this point one thing is certain, cryptocurrency is here to stay and the projects that are doing something to solve the current problems in the proof of work consensus mechanism will be the ones that lead us toward our collective vision of a better world- not just for the world of crypto but for each and every one of us.
submitted by Godballz to CryptoCurrency [link] [comments]

The Problem with PoW


Miners have always had it rough..
"Frustrated Miners"


The Problem with PoW
(and what is being done to solve it)

Proof of Work (PoW) is one of the most commonly used consensus mechanisms entrusted to secure and validate many of today’s most successful cryptocurrencies, Bitcoin being one. Battle-hardened and having weathered the test of time, Bitcoin has demonstrated the undeniable strength and reliability of the PoW consensus model through sheer market saturation, and of course, its persistency.
In addition to the cost of powerful computing hardware, miners prove that they are benefiting the network by expending energy in the form of electricity, by solving and hashing away complex math problems on their computers, utilizing any suitable tools that they have at their disposal. The mathematics involved in securing proof of work revolve around unique algorithms, each with their own benefits and vulnerabilities, and can require different software/hardware to mine depending on the coin.
Because each block has a unique and entirely random hash, or “puzzle” to solve, the “work” has to be performed for each block individually and the difficulty of the problem can be increased as the speed at which blocks are solved increases.
Hashrates and Hardware Types
While proof of work is an effective means of securing a blockchain, it inherently promotes competition amongst miners seeking higher and higher hashrates due to the rewards earned by the node who wins the right to add the next block. In turn, these higher hash rates benefit the blockchain, providing better security when it’s a result of a well distributed/decentralized network of miners.
When Bitcoin first launched its genesis block, it was mined exclusively by CPUs. Over the years, various programmers and developers have devised newer, faster, and more energy efficient ways to generate higher hashrates; some by perfecting the software end of things, and others, when the incentives are great enough, create expensive specialized hardware such as ASICs (application-specific integrated circuit). With the express purpose of extracting every last bit of hashing power, efficiency being paramount, ASICs are stripped down, bare minimum, hardware representations of a specific coin’s algorithm.
This gives ASICS a massive advantage in terms of raw hashing power and also in terms of energy consumption against CPUs/GPUs, but with significant drawbacks of being very expensive to design/manufacture, translating to a high economic barrier for the casual miner. Due to the fact that they are virtual hardware representations of a single targeted algorithm, this means that if a project decides to fork and change algorithms suddenly, your powerful brand-new ASIC becomes a very expensive paperweight. The high costs in developing and manufacturing ASICs and the associated risks involved, make them unfit for mass adoption at this time.
Somewhere on the high end, in the vast hashrate expanse created between GPU and ASIC, sits the FPGA (field programmable gate array). FPGAs are basically ASICs that make some compromises with efficiency in order to have more flexibility, namely they are reprogrammable and often used in the “field” to test an algorithm before implementing it in an ASIC. As a precursor to the ASIC, FPGAs are somewhat similar to GPUs in their flexibility, but require advanced programming skills and, like ASICs, are expensive and still fairly uncommon.
2 Guys 1 ASIC
One of the issues with proof of work incentivizing the pursuit of higher hashrates is in how the network calculates block reward coinbase payouts and rewards miners based on the work that they have submitted. If a coin generated, say a block a minute, and this is a constant, then what happens if more miners jump on a network and do more work? The network cannot pay out more than 1 block reward per 1 minute, and so a difficulty mechanism is used to maintain balance. The difficulty will scale up and down in response to the overall nethash, so if many miners join the network, or extremely high hashing devices such as ASICs or FPGAs jump on, the network will respond accordingly, using the difficulty mechanism to make the problems harder, effectively giving an edge to hardware that can solve them faster, balancing the network. This not only maintains the block a minute reward but it has the added side-effect of energy requirements that scale up with network adoption.
Imagine, for example, if one miner gets on a network all alone with a CPU doing 50 MH/s and is getting all 100 coins that can possibly be paid out in a day. Then, if another miner jumps on the network with the same CPU, each miner would receive 50 coins in a day instead of 100 since they are splitting the required work evenly, despite the fact that the net electrical output has doubled along with the work. Electricity costs miner’s money and is a factor in driving up coin price along with adoption, and since more people are now mining, the coin is less centralized. Now let’s say a large corporation has found it profitable to manufacture an ASIC for this coin, knowing they will make their money back mining it or selling the units to professionals. They join the network doing 900 MH/s and will be pulling in 90 coins a day, while the two guys with their CPUs each get 5 now. Those two guys aren’t very happy, but the corporation is. Not only does this negatively affect the miners, it compromises the security of the entire network by centralizing the coin supply and hashrate, opening the doors to double spends and 51% attacks from potential malicious actors. Uncertainty of motives and questionable validity in a distributed ledger do not mix.
When technology advances in a field, it is usually applauded and welcomed with open arms, but in the world of crypto things can work quite differently. One of the glaring flaws in the current model and the advent of specialized hardware is that it’s never ending. Suppose the two men from the rather extreme example above took out a loan to get themselves that ASIC they heard about that can get them 90 coins a day? When they join the other ASIC on the network, the difficulty adjusts to keep daily payouts consistent at 100, and they will each receive only 33 coins instead of 90 since the reward is now being split three ways. Now what happens if a better ASIC is released by that corporation? Hopefully, those two guys were able to pay off their loans and sell their old ASICs before they became obsolete.
This system, as it stands now, only perpetuates a never ending hashrate arms race in which the weapons of choice are usually a combination of efficiency, economics, profitability and in some cases control.
Implications of Centralization
This brings us to another big concern with expensive specialized hardware: the risk of centralization. Because they are so expensive and inaccessible to the casual miner, ASICs and FPGAs predominantly remain limited to a select few. Centralization occurs when one small group or a single entity controls the vast majority hash power and, as a result, coin supply and is able to exert its influence to manipulate the market or in some cases, the network itself (usually the case of dishonest nodes or bad actors).
This is entirely antithetical of what cryptocurrency was born of, and since its inception many concerted efforts have been made to avoid centralization at all costs. An entity in control of a centralized coin would have the power to manipulate the price, and having a centralized hashrate would enable them to affect network usability, reliability, and even perform double spends leading to the demise of a coin, among other things.
The world of crypto is a strange new place, with rapidly growing advancements across many fields, economies, and boarders, leaving plenty of room for improvement; while it may feel like a never-ending game of catch up, there are many talented developers and programmers working around the clock to bring us all more sustainable solutions.
The Rise of FPGAs
With the recent implementation of the commonly used coding language C++, and due to their overall flexibility, FPGAs are becoming somewhat more common, especially in larger farms and in industrial setting; but they still remain primarily out of the hands of most mining enthusiasts and almost unheard of to the average hobby miner. Things appear to be changing though, one example of which I’ll discuss below, and it is thought by some, that soon we will see a day when mining with a CPU or GPU just won’t cut it any longer, and the market will be dominated by FPGAs and specialized ASICs, bringing with them efficiency gains for proof of work, while also carelessly leading us all towards the next round of spending.
A perfect real-world example of the effect specialized hardware has had on the crypto-community was recently discovered involving a fairly new project called VerusCoin and a fairly new, relatively more economically accessible FPGA. The FPGA is designed to target specific alt-coins whose algo’s do not require RAM overhead. It was discovered the company had released a new algorithm, kept secret from the public, which could effectively mine Verus at 20x the speed of GPUs, which were the next fastest hardware types mining on the Verus network.
Unfortunately this was done with a deliberately secret approach, calling the Verus algorithm “Algo1” and encouraging owners of the FPGA to never speak of the algorithm in public channels, admonishing a user when they did let the cat out of the bag. The problem with this business model is that it is parasitic in nature. In an ecosystem where advancements can benefit the entire crypto community, this sort of secret mining approach also does not support the philosophies set forth by the Bitcoin or subsequent open source and decentralization movements.
Although this was not done in the spirit of open source, it does hint to an important step in hardware innovation where we could see more efficient specialized systems within reach of the casual miner. The FPGA requires unique sets of data called a bitstream in order to be able to recognize each individual coin’s algorithm and mine them. Because it’s reprogrammable, with the support of a strong development team creating such bitstreams, the miner doesn’t end up with a brick if an algorithm changes.
All is not lost thanks to.. um.. Technology?
Shortly after discovering FPGAs on the network, the Verus developers quickly designed, tested, and implemented a new, much more complex and improved algorithm via a fork that enabled Verus to transition smoothly from VerusHash 1.0 to VerusHash 2.0 at block 310,000. Since the fork, VerusHash 2.0 has demonstrated doing exactly what it was designed for- equalizing hardware performance relative to the device being used while enabling CPUs (the most widely available “ASICs”) to mine side by side with GPUs, at a profit and it appears this will also apply to other specialized hardware. This is something no other project has been able to do until now. Rather than pursue the folly of so many other projects before it- attempting to be “ASIC proof”, Verus effectively achieved and presents to the world an entirely new model of “hardware homogeny”. As the late, great, Bruce Lee once said- “Don’t get set into one form, adapt it and build your own, and let it grow, be like water.”
In the design of VerusHash 2.0, Verus has shown it doesn’t resist progress like so many other new algorithms try to do, it embraces change and adapts to it in the way that water becomes whatever vessel it inhabits. This new approach- an industry first- could very well become an industry standard and in doing so, would usher in a new age for proof of work based coins. VerusHash 2.0 has the potential to correct the single largest design flaw in the proof of work consensus mechanism- the ever expanding monetary and energy requirements that have plagued PoW based projects since the inception of the consensus mechanism. Verus also solves another major issue of coin and net hash centralization by enabling legitimate CPU mining, offering greater coin and hashrate distribution.
Digging a bit deeper it turns out the Verus development team are no rookies. The lead developer Michael F Toutonghi has spent decades in the field programming and is a former Vice President and Technical Fellow at Microsoft, recognized founder and architect of Microsoft's .Net platform, ex-Technical Fellow of Microsoft's advertising platform, ex-CTO, Parallels Corporation, and an experienced distributed computing and machine learning architect. The project he helped create employs and makes use of a diverse myriad of technologies and security features to form one of the most advanced and secure cryptocurrency to date. A brief description of what makes VerusCoin special quoted from a community member-
"Verus has a unique and new consensus algorithm called Proof of Power which is a 50% PoW/50% PoS algorithm that solves theoretical weaknesses in other PoS systems (Nothing at Stake problem for example) and is provably immune to 51% hash attacks. With this, Verus uses the new hash algorithm, VerusHash 2.0. VerusHash 2.0 is designed to better equalize mining across all hardware platforms, while favoring the latest CPUs over older types, which is also one defense against the centralizing potential of botnets. Unlike past efforts to equalize hardware hash-rates across different hardware types, VerusHash 2.0 explicitly enables CPUs to gain even more power relative to GPUs and FPGAs, enabling the most decentralizing hardware, CPUs (due to their virtually complete market penetration), to stay relevant as miners for the indefinite future. As for anonymity, Verus is not a "forced private", allowing for both transparent and shielded (private) transactions...and private messages as well"
If other projects can learn from this and adopt a similar approach or continue to innovate with new ideas, it could mean an end to all the doom and gloom predictions that CPU and GPU mining are dead, offering a much needed reprieve and an alternative to miners who have been faced with the difficult decision of either pulling the plug and shutting down shop or breaking down their rigs to sell off parts and buy new, more expensive hardware…and in so doing present an overall unprecedented level of decentralization not yet seen in cryptocurrency.
Technological advancements led us to the world of secure digital currencies and the progress being made with hardware efficiencies is indisputably beneficial to us all. ASICs and FPGAs aren’t inherently bad, and there are ways in which they could be made more affordable and available for mass distribution. More than anything, it is important that we work together as communities to find solutions that can benefit us all for the long term.
In an ever changing world where it may be easy to lose sight of the real accomplishments that brought us to this point one thing is certain, cryptocurrency is here to stay and the projects that are doing something to solve the current problems in the proof of work consensus mechanism will be the ones that lead us toward our collective vision of a better world- not just for the world of crypto but for each and every one of us.
submitted by Godballz to EtherMining [link] [comments]

3 Types of Bitcoin Mining Hardware

There are two options for mining Bitcoin: cloud mining and hardware mining. While cloud mining has to do with mining remotely without physical mining equipment, hardware mining comes with the full package. Most people prefer to set up a Bitcoin miner as it is more profitable than cloud mining in some cases. If you want to set up your Bitcoin miner, you need to know that it is expensive and upgraded versions are made now and then.
Types of Bitcoin Mining Hardware
  1. CPU/GPU Bitcoin Miners
Although this was the first type of Bitcoin mining hardware accepted into the mainstream, it is now considered the least powerful. You’d be using the CPU of your computer to mine Bitcoins. By adding GPU hardware to your computer, you will be able to enhance the hash rate. However, the Bitcoin mining difficulty has increased so much that people can hardly make any profit for CPU/GPU mining.
  1. FPGA Bitcoin Miners
FPGA stands for Field Programmable Gate Array. It is a circuit designed for configuration after building. This allows hardware manufacturer to buy chips in volumes and customize the chips for Bitcoin miningbefore installing them into their equipment. The performance of this hardware is far better than that of CPUs and GPUs.
  1. ASIC Bitcoin Miners
Of the three types of Bitcoin miners, ASIC is the best. ASIC stands for Application Specific Integrated Circuits. They are designed specifically for the sole purpose of mining Bitcoins. They are extremely fast and consume relatively low power compared to the others. Although they are expensive, the miming speed of these miners is mind-blowing
SEE ALSO: Will Robinhood overtake Coinbase in cryptocurrency trading (Ethereum and Bitcoin)? How does Robinhood make money? – Tue Apr 17 If you want to set up your Bitcoin mining rig, the best system for you should be the one you can afford and make a profit from. Each miner has advantages and disadvantages. You can use a mining profitability calculator to decide which hardware is best for you.
Legal Disclaimer: The content of this website (smartereum.com) is intended to convey general information only. This website does not provide legal, investment, tax, etc advice. You should not treat any information on smartereum.com as a call to make any particular decision regarding cryptocurrency usage, legal matters, investments, taxes, cryptocurrency mining, exchange usage, wallet usage, initial coin offerings (ICO), etc. We strongly suggest seeking advice from your own financial, investment, tax, or legal adviser. Neither smartereum.com nor its parent companies accept responsibility for any loss, damage, or inconvenience caused as a result of reliance on information published on, or linked to, from smartereum.com.
Bitcoin cloud mining
submitted by SwitchKanun to hashflareinfo [link] [comments]

The Problem with PoW

The Problem with PoW

Miners have always had it rough..
"Frustrated Miners"


The Problem with PoW
(and what is being done to solve it)

Proof of Work (PoW) is one of the most commonly used consensus mechanisms entrusted to secure and validate many of today’s most successful cryptocurrencies, Bitcoin being one. Battle-hardened and having weathered the test of time, Bitcoin has demonstrated the undeniable strength and reliability of the PoW consensus model through sheer market saturation, and of course, its persistency.
In addition to the cost of powerful computing hardware, miners prove that they are benefiting the network by expending energy in the form of electricity, by solving and hashing away complex math problems on their computers, utilizing any suitable tools that they have at their disposal. The mathematics involved in securing proof of work revolve around unique algorithms, each with their own benefits and vulnerabilities, and can require different software/hardware to mine depending on the coin.
Because each block has a unique and entirely random hash, or “puzzle” to solve, the “work” has to be performed for each block individually and the difficulty of the problem can be increased as the speed at which blocks are solved increases.
Hashrates and Hardware Types
While proof of work is an effective means of securing a blockchain, it inherently promotes competition amongst miners seeking higher and higher hashrates due to the rewards earned by the node who wins the right to add the next block. In turn, these higher hash rates benefit the blockchain, providing better security when it’s a result of a well distributed/decentralized network of miners.
When Bitcoin first launched its genesis block, it was mined exclusively by CPUs. Over the years, various programmers and developers have devised newer, faster, and more energy efficient ways to generate higher hashrates; some by perfecting the software end of things, and others, when the incentives are great enough, create expensive specialized hardware such as ASICs (application-specific integrated circuit). With the express purpose of extracting every last bit of hashing power, efficiency being paramount, ASICs are stripped down, bare minimum, hardware representations of a specific coin’s algorithm.
This gives ASICS a massive advantage in terms of raw hashing power and also in terms of energy consumption against CPUs/GPUs, but with significant drawbacks of being very expensive to design/manufacture, translating to a high economic barrier for the casual miner. Due to the fact that they are virtual hardware representations of a single targeted algorithm, this means that if a project decides to fork and change algorithms suddenly, your powerful brand-new ASIC becomes a very expensive paperweight. The high costs in developing and manufacturing ASICs and the associated risks involved, make them unfit for mass adoption at this time.
Somewhere on the high end, in the vast hashrate expanse created between GPU and ASIC, sits the FPGA (field programmable gate array). FPGAs are basically ASICs that make some compromises with efficiency in order to have more flexibility, namely they are reprogrammable and often used in the “field” to test an algorithm before implementing it in an ASIC. As a precursor to the ASIC, FPGAs are somewhat similar to GPUs in their flexibility, but require advanced programming skills and, like ASICs, are expensive and still fairly uncommon.
2 Guys 1 ASIC
One of the issues with proof of work incentivizing the pursuit of higher hashrates is in how the network calculates block reward coinbase payouts and rewards miners based on the work that they have submitted. If a coin generated, say a block a minute, and this is a constant, then what happens if more miners jump on a network and do more work? The network cannot pay out more than 1 block reward per 1 minute, and so a difficulty mechanism is used to maintain balance. The difficulty will scale up and down in response to the overall nethash, so if many miners join the network, or extremely high hashing devices such as ASICs or FPGAs jump on, the network will respond accordingly, using the difficulty mechanism to make the problems harder, effectively giving an edge to hardware that can solve them faster, balancing the network. This not only maintains the block a minute reward but it has the added side-effect of energy requirements that scale up with network adoption.
Imagine, for example, if one miner gets on a network all alone with a CPU doing 50 MH/s and is getting all 100 coins that can possibly be paid out in a day. Then, if another miner jumps on the network with the same CPU, each miner would receive 50 coins in a day instead of 100 since they are splitting the required work evenly, despite the fact that the net electrical output has doubled along with the work. Electricity costs miner’s money and is a factor in driving up coin price along with adoption, and since more people are now mining, the coin is less centralized. Now let’s say a large corporation has found it profitable to manufacture an ASIC for this coin, knowing they will make their money back mining it or selling the units to professionals. They join the network doing 900 MH/s and will be pulling in 90 coins a day, while the two guys with their CPUs each get 5 now. Those two guys aren’t very happy, but the corporation is. Not only does this negatively affect the miners, it compromises the security of the entire network by centralizing the coin supply and hashrate, opening the doors to double spends and 51% attacks from potential malicious actors. Uncertainty of motives and questionable validity in a distributed ledger do not mix.
When technology advances in a field, it is usually applauded and welcomed with open arms, but in the world of crypto things can work quite differently. One of the glaring flaws in the current model and the advent of specialized hardware is that it’s never ending. Suppose the two men from the rather extreme example above took out a loan to get themselves that ASIC they heard about that can get them 90 coins a day? When they join the other ASIC on the network, the difficulty adjusts to keep daily payouts consistent at 100, and they will each receive only 33 coins instead of 90 since the reward is now being split three ways. Now what happens if a better ASIC is released by that corporation? Hopefully, those two guys were able to pay off their loans and sell their old ASICs before they became obsolete.
This system, as it stands now, only perpetuates a never ending hashrate arms race in which the weapons of choice are usually a combination of efficiency, economics, profitability and in some cases control.
Implications of Centralization
This brings us to another big concern with expensive specialized hardware: the risk of centralization. Because they are so expensive and inaccessible to the casual miner, ASICs and FPGAs predominantly remain limited to a select few. Centralization occurs when one small group or a single entity controls the vast majority hash power and, as a result, coin supply and is able to exert its influence to manipulate the market or in some cases, the network itself (usually the case of dishonest nodes or bad actors).
This is entirely antithetical of what cryptocurrency was born of, and since its inception many concerted efforts have been made to avoid centralization at all costs. An entity in control of a centralized coin would have the power to manipulate the price, and having a centralized hashrate would enable them to affect network usability, reliability, and even perform double spends leading to the demise of a coin, among other things.
The world of crypto is a strange new place, with rapidly growing advancements across many fields, economies, and boarders, leaving plenty of room for improvement; while it may feel like a never-ending game of catch up, there are many talented developers and programmers working around the clock to bring us all more sustainable solutions.
The Rise of FPGAs
With the recent implementation of the commonly used coding language C++, and due to their overall flexibility, FPGAs are becoming somewhat more common, especially in larger farms and in industrial setting; but they still remain primarily out of the hands of most mining enthusiasts and almost unheard of to the average hobby miner. Things appear to be changing though, one example of which I’ll discuss below, and it is thought by some, that soon we will see a day when mining with a CPU or GPU just won’t cut it any longer, and the market will be dominated by FPGAs and specialized ASICs, bringing with them efficiency gains for proof of work, while also carelessly leading us all towards the next round of spending.
A perfect real-world example of the effect specialized hardware has had on the crypto-community was recently discovered involving a fairly new project called VerusCoin and a fairly new, relatively more economically accessible FPGA. The FPGA is designed to target specific alt-coins whose algo’s do not require RAM overhead. It was discovered the company had released a new algorithm, kept secret from the public, which could effectively mine Verus at 20x the speed of GPUs, which were the next fastest hardware types mining on the Verus network.
Unfortunately this was done with a deliberately secret approach, calling the Verus algorithm “Algo1” and encouraging owners of the FPGA to never speak of the algorithm in public channels, admonishing a user when they did let the cat out of the bag. The problem with this business model is that it is parasitic in nature. In an ecosystem where advancements can benefit the entire crypto community, this sort of secret mining approach also does not support the philosophies set forth by the Bitcoin or subsequent open source and decentralization movements.
Although this was not done in the spirit of open source, it does hint to an important step in hardware innovation where we could see more efficient specialized systems within reach of the casual miner. The FPGA requires unique sets of data called a bitstream in order to be able to recognize each individual coin’s algorithm and mine them. Because it’s reprogrammable, with the support of a strong development team creating such bitstreams, the miner doesn’t end up with a brick if an algorithm changes.
All is not lost thanks to.. um.. Technology?
Shortly after discovering FPGAs on the network, the Verus developers quickly designed, tested, and implemented a new, much more complex and improved algorithm via a fork that enabled Verus to transition smoothly from VerusHash 1.0 to VerusHash 2.0 at block 310,000. Since the fork, VerusHash 2.0 has demonstrated doing exactly what it was designed for- equalizing hardware performance relative to the device being used while enabling CPUs (the most widely available “ASICs”) to mine side by side with GPUs, at a profit and it appears this will also apply to other specialized hardware. This is something no other project has been able to do until now. Rather than pursue the folly of so many other projects before it- attempting to be “ASIC proof”, Verus effectively achieved and presents to the world an entirely new model of “hardware homogeny”. As the late, great, Bruce Lee once said- “Don’t get set into one form, adapt it and build your own, and let it grow, be like water.”
In the design of VerusHash 2.0, Verus has shown it doesn’t resist progress like so many other new algorithms try to do, it embraces change and adapts to it in the way that water becomes whatever vessel it inhabits. This new approach- an industry first- could very well become an industry standard and in doing so, would usher in a new age for proof of work based coins. VerusHash 2.0 has the potential to correct the single largest design flaw in the proof of work consensus mechanism- the ever expanding monetary and energy requirements that have plagued PoW based projects since the inception of the consensus mechanism. Verus also solves another major issue of coin and net hash centralization by enabling legitimate CPU mining, offering greater coin and hashrate distribution.
Digging a bit deeper it turns out the Verus development team are no rookies. The lead developer Michael F Toutonghi has spent decades in the field programming and is a former Vice President and Technical Fellow at Microsoft, recognized founder and architect of Microsoft's .Net platform, ex-Technical Fellow of Microsoft's advertising platform, ex-CTO, Parallels Corporation, and an experienced distributed computing and machine learning architect. The project he helped create employs and makes use of a diverse myriad of technologies and security features to form one of the most advanced and secure cryptocurrency to date. A brief description of what makes VerusCoin special quoted from a community member-
"Verus has a unique and new consensus algorithm called Proof of Power which is a 50% PoW/50% PoS algorithm that solves theoretical weaknesses in other PoS systems (Nothing at Stake problem for example) and is provably immune to 51% hash attacks. With this, Verus uses the new hash algorithm, VerusHash 2.0. VerusHash 2.0 is designed to better equalize mining across all hardware platforms, while favoring the latest CPUs over older types, which is also one defense against the centralizing potential of botnets. Unlike past efforts to equalize hardware hash-rates across different hardware types, VerusHash 2.0 explicitly enables CPUs to gain even more power relative to GPUs and FPGAs, enabling the most decentralizing hardware, CPUs (due to their virtually complete market penetration), to stay relevant as miners for the indefinite future. As for anonymity, Verus is not a "forced private", allowing for both transparent and shielded (private) transactions...and private messages as well"
If other projects can learn from this and adopt a similar approach or continue to innovate with new ideas, it could mean an end to all the doom and gloom predictions that CPU and GPU mining are dead, offering a much needed reprieve and an alternative to miners who have been faced with the difficult decision of either pulling the plug and shutting down shop or breaking down their rigs to sell off parts and buy new, more expensive hardware…and in so doing present an overall unprecedented level of decentralization not yet seen in cryptocurrency.
Technological advancements led us to the world of secure digital currencies and the progress being made with hardware efficiencies is indisputably beneficial to us all. ASICs and FPGAs aren’t inherently bad, and there are ways in which they could be made more affordable and available for mass distribution. More than anything, it is important that we work together as communities to find solutions that can benefit us all for the long term.
In an ever changing world where it may be easy to lose sight of the real accomplishments that brought us to this point one thing is certain, cryptocurrency is here to stay and the projects that are doing something to solve the current problems in the proof of work consensus mechanism will be the ones that lead us toward our collective vision of a better world- not just for the world of crypto but for each and every one of us.
submitted by Godballz to gpumining [link] [comments]

The Problem with PoW

"Frustrated Miners"

The Problem with PoW
(and what is being done to solve it)

Proof of Work (PoW) is one of the most commonly used consensus mechanisms entrusted to secure and validate many of today’s most successful cryptocurrencies, Bitcoin being one. Battle-hardened and having weathered the test of time, Bitcoin has demonstrated the undeniable strength and reliability of the PoW consensus model through sheer market saturation, and of course, its persistency.
In addition to the cost of powerful computing hardware, miners prove that they are benefiting the network by expending energy in the form of electricity, by solving and hashing away complex math problems on their computers, utilizing any suitable tools that they have at their disposal. The mathematics involved in securing proof of work revolve around unique algorithms, each with their own benefits and vulnerabilities, and can require different software/hardware to mine depending on the coin.
Because each block has a unique and entirely random hash, or “puzzle” to solve, the “work” has to be performed for each block individually and the difficulty of the problem can be increased as the speed at which blocks are solved increases.

Hashrates and Hardware Types

While proof of work is an effective means of securing a blockchain, it inherently promotes competition amongst miners seeking higher and higher hashrates due to the rewards earned by the node who wins the right to add the next block. In turn, these higher hash rates benefit the blockchain, providing better security when it’s a result of a well distributed/decentralized network of miners.
When Bitcoin first launched its genesis block, it was mined exclusively by CPUs. Over the years, various programmers and developers have devised newer, faster, and more energy efficient ways to generate higher hashrates; some by perfecting the software end of things, and others, when the incentives are great enough, create expensive specialized hardware such as ASICs (application-specific integrated circuit). With the express purpose of extracting every last bit of hashing power, efficiency being paramount, ASICs are stripped down, bare minimum, hardware representations of a specific coin’s algorithm.
This gives ASICS a massive advantage in terms of raw hashing power and also in terms of energy consumption against CPUs/GPUs, but with significant drawbacks of being very expensive to design/manufacture, translating to a high economic barrier for the casual miner. Due to the fact that they are virtual hardware representations of a single targeted algorithm, this means that if a project decides to fork and change algorithms suddenly, your powerful brand-new ASIC becomes a very expensive paperweight. The high costs in developing and manufacturing ASICs and the associated risks involved, make them unfit for mass adoption at this time.
Somewhere on the high end, in the vast hashrate expanse created between GPU and ASIC, sits the FPGA (field programmable gate array). FPGAs are basically ASICs that make some compromises with efficiency in order to have more flexibility, namely they are reprogrammable and often used in the “field” to test an algorithm before implementing it in an ASIC. As a precursor to the ASIC, FPGAs are somewhat similar to GPUs in their flexibility, but require advanced programming skills and, like ASICs, are expensive and still fairly uncommon.

2 Guys 1 ASIC

One of the issues with proof of work incentivizing the pursuit of higher hashrates is in how the network calculates block reward coinbase payouts and rewards miners based on the work that they have submitted. If a coin generated, say a block a minute, and this is a constant, then what happens if more miners jump on a network and do more work? The network cannot pay out more than 1 block reward per 1 minute, and so a difficulty mechanism is used to maintain balance. The difficulty will scale up and down in response to the overall nethash, so if many miners join the network, or extremely high hashing devices such as ASICs or FPGAs jump on, the network will respond accordingly, using the difficulty mechanism to make the problems harder, effectively giving an edge to hardware that can solve them faster, balancing the network. This not only maintains the block a minute reward but it has the added side-effect of energy requirements that scale up with network adoption.
Imagine, for example, if one miner gets on a network all alone with a CPU doing 50 MH/s and is getting all 100 coins that can possibly be paid out in a day. Then, if another miner jumps on the network with the same CPU, each miner would receive 50 coins in a day instead of 100 since they are splitting the required work evenly, despite the fact that the net electrical output has doubled along with the work. Electricity costs miner’s money and is a factor in driving up coin price along with adoption, and since more people are now mining, the coin is less centralized. Now let’s say a large corporation has found it profitable to manufacture an ASIC for this coin, knowing they will make their money back mining it or selling the units to professionals. They join the network doing 900 MH/s and will be pulling in 90 coins a day, while the two guys with their CPUs each get 5 now. Those two guys aren’t very happy, but the corporation is. Not only does this negatively affect the miners, it compromises the security of the entire network by centralizing the coin supply and hashrate, opening the doors to double spends and 51% attacks from potential malicious actors. Uncertainty of motives and questionable validity in a distributed ledger do not mix.
When technology advances in a field, it is usually applauded and welcomed with open arms, but in the world of crypto things can work quite differently. One of the glaring flaws in the current model and the advent of specialized hardware is that it’s never ending. Suppose the two men from the rather extreme example above took out a loan to get themselves that ASIC they heard about that can get them 90 coins a day? When they join the other ASIC on the network, the difficulty adjusts to keep daily payouts consistent at 100, and they will each receive only 33 coins instead of 90 since the reward is now being split three ways. Now what happens if a better ASIC is released by that corporation? Hopefully, those two guys were able to pay off their loans and sell their old ASICs before they became obsolete.
This system, as it stands now, only perpetuates a never ending hashrate arms race in which the weapons of choice are usually a combination of efficiency, economics, profitability and in some cases control.

Implications of Centralization

This brings us to another big concern with expensive specialized hardware: the risk of centralization. Because they are so expensive and inaccessible to the casual miner, ASICs and FPGAs predominantly remain limited to a select few. Centralization occurs when one small group or a single entity controls the vast majority hash power and, as a result, coin supply and is able to exert its influence to manipulate the market or in some cases, the network itself (usually the case of dishonest nodes or bad actors).
This is entirely antithetical of what cryptocurrency was born of, and since its inception many concerted efforts have been made to avoid centralization at all costs. An entity in control of a centralized coin would have the power to manipulate the price, and having a centralized hashrate would enable them to affect network usability, reliability, and even perform double spends leading to the demise of a coin, among other things.
The world of crypto is a strange new place, with rapidly growing advancements across many fields, economies, and boarders, leaving plenty of room for improvement; while it may feel like a never-ending game of catch up, there are many talented developers and programmers working around the clock to bring us all more sustainable solutions.

The Rise of FPGAs

With the recent implementation of the commonly used coding language C++, and due to their overall flexibility, FPGAs are becoming somewhat more common, especially in larger farms and in industrial setting; but they still remain primarily out of the hands of most mining enthusiasts and almost unheard of to the average hobby miner. Things appear to be changing though, one example of which I’ll discuss below, and it is thought by some, that soon we will see a day when mining with a CPU or GPU just won’t cut it any longer, and the market will be dominated by FPGAs and specialized ASICs, bringing with them efficiency gains for proof of work, while also carelessly leading us all towards the next round of spending.
A perfect real-world example of the effect specialized hardware has had on the crypto-community was recently discovered involving a fairly new project called Verus Coin (https://veruscoin.io/) and a fairly new, relatively more economically accessible FPGA. The FPGA is designed to target specific alt-coins whose algo’s do not require RAM overhead. It was discovered the company had released a new algorithm, kept secret from the public, which could effectively mine Verus at 20x the speed of GPUs, which were the next fastest hardware types mining on the Verus network.
Unfortunately this was done with a deliberately secret approach, calling the Verus algorithm “Algo1” and encouraging owners of the FPGA to never speak of the algorithm in public channels, admonishing a user when they did let the cat out of the bag. The problem with this business model is that it is parasitic in nature. In an ecosystem where advancements can benefit the entire crypto community, this sort of secret mining approach also does not support the philosophies set forth by the Bitcoin or subsequent open source and decentralization movements.
Although this was not done in the spirit of open source, it does hint to an important step in hardware innovation where we could see more efficient specialized systems within reach of the casual miner. The FPGA requires unique sets of data called a bitstream in order to be able to recognize each individual coin’s algorithm and mine them. Because it’s reprogrammable, with the support of a strong development team creating such bitstreams, the miner doesn’t end up with a brick if an algorithm changes.

All is not lost thanks to.. um.. Technology?

Shortly after discovering FPGAs on the network, the Verus developers quickly designed, tested, and implemented a new, much more complex and improved algorithm via a fork that enabled Verus to transition smoothly from VerusHash 1.0 to VerusHash 2.0 at block 310,000. Since the fork, VerusHash 2.0 has demonstrated doing exactly what it was designed for- equalizing hardware performance relative to the device being used while enabling CPUs (the most widely available “ASICs”) to mine side by side with GPUs, at a profit and it appears this will also apply to other specialized hardware. This is something no other project has been able to do until now. Rather than pursue the folly of so many other projects before it- attempting to be “ASIC proof”, Verus effectively achieved and presents to the world an entirely new model of “hardware homogeny”. As the late, great, Bruce Lee once said- “Don’t get set into one form, adapt it and build your own, and let it grow, be like water.”
In the design of VerusHash 2.0, Verus has shown it doesn’t resist progress like so many other new algorithms try to do, it embraces change and adapts to it in the way that water becomes whatever vessel it inhabits. This new approach- an industry first- could very well become an industry standard and in doing so, would usher in a new age for proof of work based coins. VerusHash 2.0 has the potential to correct the single largest design flaw in the proof of work consensus mechanism- the ever expanding monetary and energy requirements that have plagued PoW based projects since the inception of the consensus mechanism. Verus also solves another major issue of coin and net hash centralization by enabling legitimate CPU mining, offering greater coin and hashrate distribution.
Digging a bit deeper it turns out the Verus development team are no rookies. The lead developer Michael F Toutonghi has spent decades in the field programming and is a former Vice President and Technical Fellow at Microsoft, recognized founder and architect of Microsoft's .Net platform, ex-Technical Fellow of Microsoft's advertising platform, ex-CTO, Parallels Corporation, and an experienced distributed computing and machine learning architect. The project he helped create employs and makes use of a diverse myriad of technologies and security features to form one of the most advanced and secure cryptocurrency to date. A brief description of what makes VerusCoin special quoted from a community member-
"Verus has a unique and new consensus algorithm called Proof of Power which is a 50% PoW/50% PoS algorithm that solves theoretical weaknesses in other PoS systems (Nothing at Stake problem for example) and is provably immune to 51% hash attacks. With this, Verus uses the new hash algorithm, VerusHash 2.0. VerusHash 2.0 is designed to better equalize mining across all hardware platforms, while favoring the latest CPUs over older types, which is also one defense against the centralizing potential of botnets. Unlike past efforts to equalize hardware hash-rates across different hardware types, VerusHash 2.0 explicitly enables CPUs to gain even more power relative to GPUs and FPGAs, enabling the most decentralizing hardware, CPUs (due to their virtually complete market penetration), to stay relevant as miners for the indefinite future. As for anonymity, Verus is not a "forced private", allowing for both transparent and shielded (private) transactions...and private messages as well"

If other projects can learn from this and adopt a similar approach or continue to innovate with new ideas, it could mean an end to all the doom and gloom predictions that CPU and GPU mining are dead, offering a much needed reprieve and an alternative to miners who have been faced with the difficult decision of either pulling the plug and shutting down shop or breaking down their rigs to sell off parts and buy new, more expensive hardware…and in so doing present an overall unprecedented level of decentralization not yet seen in cryptocurrency.
Technological advancements led us to the world of secure digital currencies and the progress being made with hardware efficiencies is indisputably beneficial to us all. ASICs and FPGAs aren’t inherently bad, and there are ways in which they could be made more affordable and available for mass distribution. More than anything, it is important that we work together as communities to find solutions that can benefit us all for the long term.

In an ever changing world where it may be easy to lose sight of the real accomplishments that brought us to this point one thing is certain, cryptocurrency is here to stay and the projects that are doing something to solve the current problems in the proof of work consensus mechanism will be the ones that lead us toward our collective vision of a better world- not just for the world of crypto but for each and every one of us.
submitted by Godballz to CryptoTechnology [link] [comments]

The rise of specialized hardware (particularly FPGAs) and its impact on the mining community

The rise of specialized hardware (particularly FPGAs) and its impact on the mining community

Proof of Work (PoW) is one of the most commonly used consensus mechanisms entrusted to secure and validate many of today’s most successful cryptocurrencies, Bitcoin being one. Battle-hardened and having weathered the test of time, Bitcoin has demonstrated the undeniable strength and reliability of the PoW consensus model through sheer market saturation, and of course, its persistency.

In addition to the cost of powerful computing hardware, miners prove that they are benefiting the network by expending energy in the form of electricity, by solving and hashing away complex math problems on their computers, utilizing any suitable tools that they have at their disposal. The mathematics involved in securing proof of work revolve around unique algorithms, each with their own benefits and vulnerabilities, and can require different software/hardware to mine depending on the coin.

Because each block has a unique and entirely random hash, or “puzzle” to solve, the “work” has to be performed for each block individually and the difficulty of the problem can be increased as the speed at which blocks are solved increases.

Hashrates and Hardware Types
While proof of work is an effective means of securing a blockchain, it inherently promotes competition amongst miners seeking higher and higher hashrates due to the rewards earned by the node who wins the right to add the next block. In turn, these higher hash rates benefit the blockchain, providing better security when it’s a result of a well distributed/decentralized network of miners.

When Bitcoin first launched its genesis block, it was mined exclusively by CPUs. Over the years, various programmers and developers have devised newer, faster, and more energy efficient ways to generate higher hashrates; some by perfecting the software end of things, and others, when the incentives are great enough, create expensive specialized hardware such as ASICs (application-specific integrated circuit). With the express purpose of extracting every last bit of hashing power, efficiency being paramount, ASICs are stripped down, bare minimum, hardware representations of a specific coin’s algorithm.

This gives ASICS a massive advantage in terms of raw hashing power and also in terms of energy consumption against CPUs/GPUs, but with significant drawbacks of being very expensive to design/manufacture, translating to a high economic barrier for the casual miner. Due to the fact that they are virtual hardware representations of a single targeted algorithm, this means that if a project decides to fork and change algorithms suddenly, your powerful brand-new ASIC becomes a very expensive paperweight. The high costs in developing and manufacturing ASICs and the associated risks involved, make them unfit for mass adoption at this time.

Somewhere on the high end, in the vast hashrate expanse created between GPU and ASIC, sits the FPGA (field programmable gate array). FPGAs are basically ASICs that make some compromises with efficiency in order to have more flexibility, namely they are reprogrammable and often used in the “field” to test an algorithm before implementing it in an ASIC. As a precursor to the ASIC, FPGAs are somewhat similar to GPUs in their flexibility, but require advanced programming skills and, like ASICs, are expensive and still fairly uncommon.

The Arms Race of the Geek
One of the issues with proof of work incentivizing the pursuit of higher hashrates is in how the network calculates block reward coinbase payouts and rewards miners based on the work that they have submitted. If a coin generated, say a block a minute, and this is a constant, then what happens if more miners jump on a network and do more work? The network cannot pay out more than 1 block reward per 1 minute, and so a difficulty mechanism is used to maintain balance. The difficulty will scale up and down in response to the overall nethash, so if many miners join the network, or extremely high hashing devices such as ASICs or FPGAs jump on, the network will respond accordingly, using the difficulty mechanism to make the problems harder, effectively giving an edge to hardware that can solve them faster, balancing the network. This not only maintains the block a minute reward but it has the added side-effect of energy requirements that scale up with network adoption.

Imagine, for example, if one miner gets on a network all alone with a CPU doing 50 MH/s and is getting all 100 coins that can possibly be paid out in a day. Then, if another miner jumps on the network with the same CPU, each miner would receive 50 coins in a day instead of 100 since they are splitting the required work evenly, despite the fact that the net electrical output has doubled along with the work. Electricity costs miner’s money and is a factor in driving up coin price along with adoption, and since more people are now mining, the coin is less centralized. Now let’s say a large corporation has found it profitable to manufacture an ASIC for this coin, knowing they will make their money back mining it or selling the units to professionals. They join the network doing 900 MH/s and will be pulling in 90 coins a day, while the two guys with their CPUs each get 5 now. Those two guys aren’t very happy, but the corporation is. Not only does this negatively affect the miners, it compromises the security of the entire network by centralizing the coin supply and hashrate, opening the doors to double spends and 51% attacks from potential malicious actors. Uncertainty of motives and questionable validity in a distributed ledger do not mix.

When technology advances in a field, it is usually applauded and welcomed with open arms, but in the world of crypto things can work quite differently. One of the glaring flaws in the current model and the advent of specialized hardware is that it’s never ending. Suppose the two men from the rather extreme example above took out a loan to get themselves that ASIC they heard about that can get them 90 coins a day? When they join the other ASIC on the network, the difficulty adjusts to keep daily payouts consistent at 100, and they will each receive only 33 coins instead of 90 since the reward is now being split three ways. Now what happens if a better ASIC is released by that corporation? Hopefully, those two guys were able to pay off their loans and sell their old ASICs before they became obsolete.

This system, as it stands now, only perpetuates a never ending hashrate arms race in which the weapons of choice are usually a combination of efficiency, economics, profitability and in some cases control.

Implications of Centralization
This brings us to another big concern with expensive specialized hardware: the risk of centralization. Because they are so expensive and inaccessible to the casual miner, ASICs and FPGAs predominantly remain limited to a select few. Centralization occurs when one small group or a single entity controls the vast majority hash power and, as a result, coin supply and is able to exert its influence to manipulate the market or in some cases, the network itself (usually the case of dishonest nodes or bad actors).

This is entirely antithetical of what cryptocurrency was born of, and since its inception many concerted efforts have been made to avoid centralization at all costs. An entity in control of a centralized coin would have the power to manipulate the price, and having a centralized hashrate would enable them to affect network usability, reliability, and even perform double spends leading to the demise of a coin, among other things.

The world of crypto is a strange new place, with rapidly growing advancements across many fields, economies, and boarders, leaving plenty of room for improvement; while it may feel like a never-ending game of catch up, there are many talented developers and programmers working around the clock to bring us all more sustainable solutions.

The Rise of FPGAs
With the recent implementation of the commonly used coding language C++, and due to their overall flexibility, FPGAs are becoming somewhat more common, especially in larger farms and in industrial setting; but they still remain primarily out of the hands of most mining enthusiasts and almost unheard of to the average hobby miner. Things appear to be changing though, one example of which I’ll discuss below, and it is thought by some, that soon we will see a day when mining with a CPU or GPU just won’t cut it any longer, and the market will be dominated by FPGAs and specialized ASICs, bringing with them efficiency gains for proof of work, while also carelessly leading us all towards the next round of spending.

A real-world example of the effect specialized hardware has had on the crypto-community was recently discovered involving a fairly new project called Verus Coin (https://veruscoin.io/) and a fairly new, relatively more economically accessible FPGA. The FPGA is designed to target specific alt-coins whose algo’s do not require RAM overhead. It was discovered the company had released a new algorithm, kept secret from the public, which could effectively mine Verus at 20x the speed of GPUs, which were the next fastest hardware types mining on the Verus network.

Unfortunately this was done with a deliberately secret approach, calling the Verus algorithm “Algo1” and encouraging owners of the FPGA to never speak of the algorithm in public channels, admonishing a user when they did let the cat out of the bag. The problem with this business model is that it is parasitic in nature. In an ecosystem where advancements can benefit the entire crypto community, this sort of secret mining approach also does not support the philosophies set forth by the Bitcoin or subsequent open source and decentralization movements.

Although this was not done in the spirit of open source, it does hint to an important step in hardware innovation where we could see more efficient specialized systems within reach of the casual miner. The FPGA requires unique sets of data called a bitstream in order to be able to recognize each individual coin’s algorithm and mine them. Because it’s reprogrammable, with the support of a strong development team creating such bitstreams, the miner doesn’t end up with a brick if an algorithm changes.

Inclusive Hardware Equalization, Security, Decentralization
Shortly after discovering FPGAs on the network, the Verus developers quickly designed, tested, and implemented a new, much more complex and improved algorithm via a fork that enabled Verus to transition smoothly from VerusHash 1.0 to VerusHash 2.0 at block 310,000. Since the fork, VerusHash 2.0 has demonstrated doing exactly what it was designed for- equalizing hardware performance relative to the device being used while enabling CPUs (the most widely available “ASICs”) to mine side by side with GPUs, at a profit and it appears this will also apply to other specialized hardware. This is something no other project has been able to do until now. Rather than pursue the folly of so many other projects before it- attempting to be “ASIC proof”, Verus effectively achieved and presents to the world an entirely new model of “hardware homogeny”. As the late, great, Bruce Lee once said- “Don’t get set into one form, adapt it and build your own, and let it grow, be like water.”

In the design of VerusHash 2.0, Verus has shown it doesn’t resist progress like so many other new algorithms try to do, it embraces change and adapts to it in the way that water becomes whatever vessel it inhabits. This new approach- an industry first- could very well become an industry standard and in doing so, would usher in a new age for proof of work based coins. VerusHash 2.0 has the potential to correct the single largest design flaw in the proof of work consensus mechanism- the ever expanding monetary and energy requirements that have plagued PoW based projects since the inception of the consensus mechanism. Verus also solves another major issue of coin and net hash centralization by enabling legitimate CPU mining, offering greater coin and hashrate distribution.

If other projects adopt Verus’ new algorithm- VerusHash 2.0, it could mean an end to all the doom and gloom predictions that CPU and GPU mining are dead, offering a much needed reprieve and an alternative to miners who have been faced with the difficult decision of either pulling the plug and shutting down shop or breaking down their rigs to sell off parts and buy new, more expensive hardware…and in so doing presents an overall unprecedented level of decentralization not seen in cryptocurrency.

Technological advancements led us to the world of secure digital currencies and the progress being made with hardware efficiencies is indisputably beneficial to us all. ASICs and FPGAs aren’t inherently bad, and there are ways in which they could be made more affordable and available for mass distribution. More than anything, it is important that we work together as communities to find solutions that can benefit us all for the long term.

In an ever changing world where it may be easy to lose sight of the real accomplishments that brought us to this point one thing is certain, VerusHash 2.0 is a shining beacon of hope and a lasting testament to the project’s unwavering dedication to it’s vision of a better world- not just for the world of crypto but for each and every one of us.
submitted by Godballz to CryptoTechnology [link] [comments]

A look into the future regarding Decentralization,ASIC resistance and Vertcoin and other crypto currency (Long Post)

Warning: this post is lengthy because it includes details to understand the current development of Crypto and ASIC resistant Cryptos.
I. Decentralization is the fundamental assumption in the block chain security model:
I am glad that the recent Vertcoin price hike have brought more people to the awareness of crypto-currency decentralization. As decentralization is an assumption in satoshi's white paper, and hence the fundamental aspect in block-chain's security model. It appears that the block-chain security model is not complete. As you can see, there is an obvious concentration of computing power appears in bitcoin where one or two ASICs manufactures are controlling more than 51% of the network hash power. In satoshi's white paper, the assumption of 1 CPU,1 vote, does not hold indefinitely. Just 5-6 years after the inception of blockchain, we appear to have such machine based on ASIC, and the phenomenon of 1 ASIC, 1*103 or more votes, and the magnitude is only seem to be increasing.
Centralization defeats the entire security model of any crypto-currency based on block-chain and its variant. As of the time of the writing the bitcoin network and its public ledger's survival is not based on its invulnerability to rewrite, but based on the fact that the ASIC computing powers that secure the network currently lacks incentive to destroy it. When such incentive arrives the result can be catastrophic. As whoever controls the 51% hash power control the power to modify the block chain. In the Segwit 1 fork, there is worry that the bitcoin chain can not survive. (reference this article for a variety of possibility during a fork where miner controls the majority of hash power: https://medium.com/@jimmysong/uasf-bip148-scenarios-and-game-theory-9530336d953e ). In segwit 2X fork, some miners wants to make their own copy of of the chain, and in the process destroy the original chain. This upcoming fork is much more threatening than every single bitcoin fork comes before it.
II. CPU/GPU vs FPGA vs ASIC - you must understand the differences to understand the ASIC resistance movement
The decentralization problem is not fully solved yet. the crypto community and its developers are left to fill in the question.
As you can see the current approach is to make hashing algorithm to be hard to realize in ASICs. To fully discuss this approach, we must look at the currently available computing hardware architectures. the list go like this:
(CPU and GPU)->FPGA->ASICs.
The list go from the most general purpose,flexible computing hardware to the least flexible, and specific task computing hardware.
The list also go from the worst raw performance(you can say hash power for crypto) to the best raw performance, given a specific task.
CPU, and to a extend GPU are general purposed hardware that can be programmed to perform all tasks, while ASIC(Application Specific Integrated Circuits) can only perform a specific task. FPGA(Field Programmable Gate Arrays) - sits somewhere in the middle, it can be reprogram to perform a specific task better than CPUs and GPUs but the performance and durability is worse than ASIC.
In therms of computing speed,optimization and hence raw performance on a specific task, the list goes in reverse, this is because hashing algorithms and its calculation can be optimize thru parallelism(I have 10 workers to do 1 task 10 times quicker) and pipe-lining (think factory production pipeline with sequential work stations). CPU and General-Purpose GPUs in our computers exploit parallalism and pipe-lining to a degree, But because they are general hardware, the exploitation is limited because they must accommodate all types of possible computation. ASICs, are develop to only accommodate the required computation in a task, and exploit parallelism and pipe-lining to the extreme, this gives rise to ASICs such as AntMiners, where the performance is more than 3 magnitudes better than CPU and GPU.
III. ASIC resistance, and the movement to keep the crypto decentralize
The ultimate goal of alt-coin development is to fill in the void of satoshi's block-chain security model. The void is , How to keep the network decentralized in terms of hashrate/s?
The obvious answer, the first approach, would be to let the most abundant hardware to perform as well as the least abundant hardware. Thus, make an hashing algorithm so that either a CPU can perform as well as ASICs, or make an algorithm so that it is very very hard(cost prohibited) to develop ASICs for.
It appears that this approach is the most successful at the moment, some memory hard algorithms such as Vertcoin's very own Lyra2REv2 has no ASICs currently available.
But on the longer time frame, the profit driven development of ASICs is a definite trend, ASIC resistance is a constant Spear vs Shield game. Being ASIC resistance is not necessarily equivalent to being decentralized.
There are several ramification of being ASIC resistant. First the algorithm is necessarily more complex and cost more electricity on CPU/GPU to perform. Secondly, Developing ASIC for algorithm such as Lyra2REv2 is hard. Because of this hardness, there are fewer people who can develop this than the amount of people who can develop SHA256*bitcoin ASICs. Maybe in the not too distance future bitmain's monopoly over SHA256 ASICs would end and more of us can purchase a bitcoin ASIC, thus the bitcoin network becomes decentralized again. But because it is harder to develop Lyra2REv2 ASICs, once developed the ASIC monopoly can remain for a very long time enough to destroy the network. Because fewer people can do it, it will be more centralized once developed.
This does not mean that Vertcoin's security model is not good. In fact it is very promising. First the hardness to develop Lyra2REv2 ASIC can be to the point of such extrem that no one is able to figure out over an very long period of time. Second, once developed, the devs promise to hard fork the network again with a new algorithm in their tool bag. because the tool bag is unknown, the ASIC development cycle repeats, possibility over a long time.
So the Vertcoin's hashing algo Lyra2REv2 is among the best of all crypto. combining with the fact that a promised evolution of hashing algo once ASIC appear, I dare to say that the security/decentralization model is the best in crypto.
IV. Further discussion regarding ASICs and Network decentralization and security. paradigm switch regarding ASICs
It is in the profit driven nature that an ASIC would apear,Bitcoin already fell, for a memory hard algo, Scrypt and Scrypt-N is thought to be resistant enough, but ASIC appear, thus LiteCoin and The old Vertcoin falls. Vertcoin later forked and adapt to Lyra2 , and sub sequently Lyra2REv2 and remain the most secure coin.
For the ones used by GroestleCoin(Groestl), Decred(Blake256), SteinCoin(Stein256) , although there is no ASICs, but over an infinite horizon, the ASIC will appear this coins can all flop over night, if they do not adapt to the changes , Like what Vertcoin can do.
I think in the infinitely long term, there are 2 solution.
1st the same as Vertcoin, Keep ASICs out, and keep evolving the unknown puzzle bag for replacement if ASICs appear.
2nd, Amend the algorithm so that the theoretical upper bound in the speed up from ASIC is low. This requires making most calculations sequential and none-associative, with a slow bottle neck. thus parallal and pipe-lining machine can not take too much advantage. After that make ASIC development an open source, community movement, so that the entire community is guarantee to enjoy the advancement in ASICs. This would guarantee that the advantage from a new novel asic is small compare to what the community have, and limit the degree of concentration of hash power. ASIC can also benefit the network by reducing power consumption and increase transaction speed.
V. Conclusion
The current security model of Bitcoin is flawed and Vertcoin's solution is the current best at tackling the security concern. The promise of evolution of Vertcoin's Lyra2REv2 can be a viable long term solution to the Spear vs Shield game of ASICs. Nonetheless, I think we are making good progress of filling the void. I hope the future decentralization solution of Vertcoin can evolve past the paradigm of strictly ASIC resistance, and considering community driven and fair distribution of ASICs. I hope everyone in crypto can participate in this discussion.
Disclosure: I hold Vertcoin, 100% of my porfolio :).
submitted by bntyjx to vertcoin [link] [comments]

QuarkChain Testnet 2.0 Mining.

QuarkChain Testnet 1.0 was built based on standardized blockchain system requirements, which included network, wallet, browser, and virtual machine functionalities. Other than the fact that the token was a test currency, the environment was completely compatible with the main network. By enhancing the communication efficiency and security of the network, Testnet 2.0 further improves the openness of the network. In addition, Testnet 2.0 will allow community members (other than citizens or residents of the United States) to contribute directly to the network, i.e. running a full node and mining, and receive testnet tokens as rewards.
QuarkChain Testnet 2.0 will support multiple mining algorithms, including two typical algorithms: Ethash and Double SHA256, as well as QuarkChain’s unique algorithm called Qkchash – a customized ASIC-resistant, CPU mining algorithm, exclusively developed by QuarkChain. Mining is available both on the root chain and on shards due to QuarkChain’s two-layered blockchain structure. Miners can flexibly choose to mine on the root chain with higher computing power requirements or on shards based on their own computing power levels. Our Goal By allowing community members to participate in mining on Testnet 2.0, our goal is to enhance QuarkChain’s community consensus, encourage community members to participate in testing and building the QuarkChain network, and gain first-hand experience of QuarkChain’s high flexibility and usability. During this time, we hope that the community can develop a better understanding about our mining algorithms, sharding technologies, and governance structures, etc. Furthermore, this will be a more thorough challenge to QuarkChain’s design before the launch of mainnet! Thus, we sincerely invite you to join the Testnet 2.0 mining event and build QuarkChain’s infrastructure together!
Today, we’re pleased to announce that we are officially providing the CPU mining demo to the public (other than citizens and residents of the United States)! Everyone can participate in our mining event, and earn tQKC, which can be exchanged to real rewards by non-U.S. persons after the launch of our mainnet. Also, we expect to upgrade our testnet over time, and expect to allow GPU mining for Ethash, and ASIC mining for Double SHA256 in the future. In addition, in the near future, a mining pool that is compatible with all mining algorithms of QuarkChain is also expected to be supported.
We hope all the community members can join in with us, and work together to complete this milestone! 2 Introduction to Mining Algorithms 2.1 What is mining? Mining is the process of generating the new blocks, in which the records of current transactions are added to the record of past transactions. Miners use software that contribute their mining power to participate in the maintenance of a blockchain. In return, they obtain a certain amount of QKC per block, which is called coinbase reward. Like many other blockchain technologies, QuarkChain adopts the most widely used Proof of Work (PoW) consensus algorithm to secure the network.
A cryptographically-secure PoW is a costly and time-consuming process which is difficult to solve due to computation-intensity or memory intensity but easy for others to verify. For a block to be valid it must satisfy certain requirements and hash to a value less than the current target threshold. Reverting a block requires recreating all successor blocks and redoing the work they contain, which is costly.
By running a cluster, everyone can become a miner and participate in the mining process. The mining rewards are proportional to the number of blocks mined by each individual.
2.2 Introduction to QuarkChain Algorithms and Mining setup According to QuarkChain’s two-layered blockchain structure and Boson consensus, different shards can apply different consensus and mining algorithms. As part of the Boson consensus, each shard can adjust the difficulty dynamically to increase or decrease the hash power of each shard chain.
In order to fully test QuarkChain testnet 2.0, we adopt three different types of mining algorithms” Ethash, Double SHA256, and Qkchash, which is ASIC resistant and exclusively developed by QuarkChain founder Qi Zhou. These first two hash algorithms correspond to the mining algorithms dominantly conducted on the graphics processing unit (GPU) and application-specific integrated circuits (ASIC), respectively.
I. Ethash Ethash is the PoW mining algorithm for Ethereum. It is the latest version of earlier Dagger-Hashimoto. Ethash is memory intensive, which makes it require large amounts of memory space in the process of mining. The efficiency of mining is basically independent of the CPU, but directly related to memory size and bandwidth. Therefore, by design, building Ethash ASIC is relatively difficult. Currently, the Ethash mining is dominantly conducted on the GPU machines. Read more about Ethash: https://github.com/ethereum/wiki/wiki/Ethash
II. Double SHA256 Double SHA256 is the PoW mining algorithms for Bitcoin. It is computational intensive hash algorithm, which uses two SHA256 iterations for the block header. If the hash result is less than the specific target, the mining is successful. ASIC machine has been developed by Bitmain to find more hashes with less electrical power usage. Read more about Double SHA256: https://en.bitcoin.it/wiki/Block_hashing_algorithm
III. Qkchash Originally, Bitcoin mining was conducted on the CPU of individual computers, with more cores and greater speed resulting in more profitability. After that, the mining process became dominated by GPU machines, then field-programmable gate arrays (FPGA) and finally ASIC, in a race to achieve more hash rates with less electrical power usage. Due to this arms race, it has become increasingly harder for prospective new miners to join. This raises centralization concerns because the manufacturers of the high-performance ASIC are concentrated in a small few.
To solve this, after extensive research and development, QuarkChain founder Dr. Qi Zhou has developed mining algorithm — Qkchash, that is expected to be ASIC-resistant. The idea is motivated by the famous date structure orders-statistic tree. Based on this data structure, Qkchash requires to perform multiple search, insert, and delete operations in the tree, which tries to break the ASIC pipeline and makes the code execution path to be data-dependent and unpredictable besides random memory-access patterns. Thus, the mining efficiency is closely related to the CPU, which ensures the security of Boston consensus and encourges the mining decentralization.
Please refer to Dr. Qi’s paper for more details: https://medium.com/quarkchain-official/order-statistics-based-hash-algorithm-e40f108563c4
2.3 Testnet 2.0 mining configuration Numbers of Shards: 8 Cluster: According to the real-time online mining node The corresponding mining algorithm is Read more about Ethash with Guardian: https://github.com/QuarkChain/pyquarkchain/wiki/Ethash-with-Guardian)
We will provide cluster software and the demo implementation of CPU mining to the public. Miners are able to arbitrarily select one shard or multiple shards to mine according to the mining difficulty and rewards of different shards. GPU / ASIC mining is allowed if the public manages to get it working with the current testnet. With the upgrade of our testnet, we will further provide the corresponding GPU / ASIC software.
QuarkChain’s two-layered blockchain structure, new P2P mode, and Boson consensus algorithm are expected tobe fully tested and verified in the QuarkChain testnet 2.0. 3 Mining Guidance In order to encourage all community members to participate in QuarkChain Testnet 2.0 mining event, we have prepared three mining guidances for community members of different backgrounds.
Today we are releasing the Docker Mining Tutorial first. This tutorial provides a command line configuration guide for developers and a docker image for multiple platforms, including a concise introduction of nodes and mining settings. Follow the instructions here: Quick Start with QuarkChain Mining.
Next we will continue to release: A tutorial for community members who don’t have programming background. In this tutorial, we will teach how to create private QuarkChain nodes using AWS, and how to mine QKC step by step. This tutorial is expected to be released in the next few days. Programs and APIs integrated with GPU / ASIC mining. This is expected to allow existing miners to switch to QKC mining more seamlessly. Frequently Asked Questions: 1. Can I use my laptop or personal computer to mine? Yes, we will provide cluster software and the demo implementation of CPU mining to the public. Miners will be able to arbitrarily select one shard or multiple shards to mine according to the work difficulty and rewards of different shards. 2. What is the minimum requirements for my laptop or personal computer to mine? Please prepare a Linux or MacOs machine with public IP address or port forwarding set up. 3. Can I mine with my GPU or an ASIC machine? For now, we will only be providing the demo implementation of CPU mining as our first step. Interested miners/developers can rewrite the corresponding GPU / ASIC mining program, according to the JSON RPC API we provided. With the upgrade of our testnet, we expect to provide the corresponding GPU / ASIC interface at a later date. 4. What is the difference among the different mining algorithms? Which one should I choose? Double SHA256 is a computational intensive algorithm, but Ethash and Qkchash are memory intensive algorithms, which have certain requirements on the computer’s memory. Since currently we only support CPU mining, the mining efficiency entirely depends on the cores and speed of CPU. 5. For testnet mining, what else should I know? First, the mining process will occupy a computer’s memory. Thus, it is recommended to use an idle computer for mining. In Testnet 2.0 settings, the target block time of root chain is 60 seconds, and the target block time of shard chain is 10 seconds. The mining is a completely random process, which will take some time and consume a certain amount of electricity. 6. What are the risks of testnet mining? Currently our testnet is still under the development stage and may not be 100% stable. Thus, there would be some risks for QuarkChain main chain forks in testnet, software upgrades and system reboots. These may cause your tQKC or block record to be lost despite our best efforts to ensure the stability and security of the testnet.
For more technical questions, welcome to join our developer community on Discard: https://discord.me/quarkchain. 4 Reward Mechanism Testnet 2.0 and all rewards described herein, including mining, are not being offered and will not be available to any citizens or residents of the United States and certain other jurisdictions. All rewards will only be payable following the mainnet launch of QuarkChain. In order to claim or receive any of the following rewards after mainnet launch, you will be required to provide certain identifying documentation and information about yourself. Failure to provide such information or demonstrate compliance with the restrictions herein may result in forfeiture of all rewards, prohibition from participating in future QuarkChain programs, and other sanctions.
NO U.S. PERSONS MAY PARTICIPATE IN TESTNET 2.0 AND QUARKCHAIN WILL STRICTLY ENFORCE THIS VIA OUR KYC PROCEDURES. IF YOU ARE A CITIZEN OR RESIDENT OF THE UNITED STATES, DO NOT PARTICIPATE IN TESTNET 2.0. YOU WILL NOT RECEIVE ANY REWARDS FOR YOUR PARTICIPATION.
4.1 Mining Rewards
  1. Prize Pool A total of 5 million QKC prize pool have been reserved to motivate all miners to participate in the testnet 2.0 mining event. According to the different mining algorithms, the prize pool is allocated as follows:
Total Prize Pool: 5,000,000 QKC Prize Pool for Ethash Algorithm: 2,000,000 QKC Prize Pool for Double SHA256 Algorithm: 1,000,000 QKC Prize Pool for Qkchash Algorithm: 2,000,000 QKC
The number of QKC each miner is eligible to receive upon mainnet launch will be calculated on a pro rata basis for each mining algorithm set forth above, based on the ratio of sharded block mined by each miner to the total number of sharded block mined by all miners employing such mining algorithm in Testnet 2.0.
  1. Early-bird Rewards To encourage more people to participate early, we will provide early bird rewards. Miners who participate in the first month (December 2018, PST) will enjoy double points. This additional point reward will be ended on December 31, 2018, 11:59pm (PST).
4.2 Bonus for Bug Submission: If you find any bugs for QuarkChain testnet, please feel free to create an issue on our Github page: https://github.com/QuarkChain/pyquarkchain/issues, or send us an email to [email protected]. We may provide related rewards based on the importance and difficulty of the bugs.
4.3 Reward Rules: QuarkChain reserves the right to review the qualifications of the participants in this event. If any cheating behaviors were to be found, the participant will be immediately disqualified from any rewards. QuarkChain further reserves the right to update the rules of the event, to stop the event/network, or to restart the event/network in its sole discretion, including the right to interpret any rules, terms or conditions. For the latest information, please visit our official website or follow us on Telegram/Twitter. About QuarkChain QuarkChain is a flexible, scalable, and user-oriented blockchain infrastructure by applying blockchain sharding technology. It is one of the first public chains that successfully implemented state sharding technology for blockchain in the world. QuarkChain aims to deliver 100,000+ on-chain TPS. Currently, 14,000+ peak TPS has already been achieved by an early stage testnet. QuarkChain already has over 50 partners in its ecosystem. With flexibility, scalability, and usability, QuarkChain is enabling EVERYONE to enjoy blockchain technology at ANYTIME and ANYWHERE.
Testnet 2.0 and all rewards described herein are not being and will not be offered in the United States or to any U.S. persons (as defined in Regulation S promulgated under the U.S. Securities Act of 1933, as amended) or any citizens or residents of countries subject to sanctions including the Balkans, Belarus, Burma, Cote D’Ivoire, Cuba, Democratic Republic of Congo, Iran, Iraq, Liberia, North Korea, Sudan, Syria, Zimbabwe, Central African Republic, Crimea, Lebanon, Libya, Somalia, South Suda, Venezuela and Yemen. QuarkChain reserves the right to terminate, suspend or prohibit participation of any user in Testnet 2.0 at any time.
In order to claim or receive any rewards, including mining rewards, you will be required to provide certain identifying documentation and information. Failure to provide such information or demonstrate compliance with the restrictions herein may result in termination of your participation, forfeiture of all rewards, prohibition from participating in future QuarkChain programs, and other actions.
This announcement is provided for informational purposes only and does not guarantee anyone a right to participate in or receive any rewards in connection with Testnet 2.0.
Note: The use of Testnet 2.0 is subject to our terms and conditions available at: https://quarkchain.io/testnet-2-0-terms-and-conditions/
more about qurakchain: Website: https://quarkchain.io/cn/ Facebook: https://www.facebook.com/quarkchainofficial/ Twitter: https://twitter.com/Quark_Chain Telegram: https://t.me/quarkchainio
submitted by Rahadsr to u/Rahadsr [link] [comments]

The Concept of Bitcoin

The Concept of Bitcoin
https://preview.redd.it/5r9soz2ltq421.jpg?width=268&format=pjpg&auto=webp&s=6a89685f735b53ec1573eefe08c8646970de8124
What is Bitcoin?
Bitcoin is an experimental system of transfer and verification of property based on a network of peer to peer without any central authority.
The initial application and the main innovation of the Bitcoin network is a system of digital currency decentralized unit of account is bitcoin.
Bitcoin works with software and a protocol that allows participants to issue bitcoins and manage transactions in a collective and automatic way. As a free Protocol (open source), it also allows interoperability of software and services that use it. As a currency bitcoin is both a medium of payment and a store of value.
Bitcoin is designed to self-regulate. The limited inflation of the Bitcoin system is distributed homogeneously by computing the network power, and will be limited to 21 million divisible units up to the eighth decimal place. The functioning of the Exchange is secured by a general organization that everyone can examine, because everything is public: the basic protocols, cryptographic algorithms, programs making them operational, the data of accounts and discussions of the developers.
The possession of bitcoins is materialized by a sequence of numbers and letters that make up a virtual key allowing the expenditure of bitcoins associated with him on the registry. A person may hold several key compiled in a 'Bitcoin Wallet ', 'Keychain' web, software or hardware which allows access to the network in order to make transactions. Key to check the balance in bitcoins and public keys to receive payments. It contains also (often encrypted way) the private key associated with the public key. These private keys must remain secret, because their owner can spend bitcoins associated with them on the register. All support (keyrings) agrees to maintain the sequence of symbols constituting your keychain: paper, USB, memory stick, etc. With appropriate software, you can manage your assets on your computer or your phone.
Bitcoin on an account, to either a holder of bitcoins in has given you, for example in Exchange for property, either go through an Exchange platform that converts conventional currencies in bitcoins, is earned by participating in the operations of collective control of the currency.
The sources of Bitcoin codes have been released under an open source license MIT which allows to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the software, subject to insert a copyright notice into all copies.
Bitcoin creator, Satoshi Nakamoto
What is the Mining of bitcoin?
Technical details :
During mining, your computer performs cryptographic hashes (two successive SHA256) on what is called a header block. For each new hash, mining software uses a different random number that called Nuncio. According to the content of the block and the nonce value typically used to express the current target. This number is called the difficulty of mining. The difficulty of mining is calculated by comparing how much it is difficult to generate a block compared to the first created block. This means that a difficulty of 70000 is 70000 times more effort that it took to Satoshi Nakamoto to generate the first block. Where mining was much slower and poorly optimized.
The difficulty changes each 2016 blocks. The network tries to assign the difficulty in such a way that global computing power takes exactly 14 days to generate 2016 blocks. That's why the difficulty increases along with the power of the network.
Material :
In the beginning, mining with a processor (CPU) was the only way to undermine bitcoins. (GPU) graphics cards have possibly replaced the CPU due to their nature, which allowed an increase between 50 x to 100 x in computing power by using less electricity by megahash compared to a CPU.
Although any modern GPU can be used to make the mining, the brand AMD GPU architecture has proved to be far superior to nVidia to undermine bitcoins and the ATI Radeon HD 5870 card was the most economical for a time.
For a more complete list of graphics cards and their performance, see Wiki Bitcoin: comparison of mining equipment
In the same way that transition CPU to GPU, the world of mining has evolved into the use of the Field Programmable Gate Arrays (FPGA) as a mining platform. Although FPGAs did not offer an increase of 50 x to 100 x speed of calculation as the transition from CPU to GPU, they offered a better energy efficiency.
A typical HD/s 600 graphics card consumes about 400w of power, while a typical FPGA device can offer a rate of hash of 826 MH/s to 80w of power consumption, a gain of 5 x more calculations for the same energy power. Since energy efficiency is a key factor in the profitability of mining, it was an important step for the GPU to FPGA migration for many people.
The world of the mining of bitcoin is now migrating to the Application Specific Integrated Circuit (ASIC). An ASIC is a chip designed specifically to accomplish a single task. Unlike FPGAs, an ASIC is unable to be reprogrammed for other tasks. An ASIC designed to undermine bitcoins cannot and will not do anything else than to undermine bitcoins.
The stiffness of an ASIC allows us to offer an increase of 100 x computing power while reducing power consumption compared to all other technologies. For example, a classic device to offer 60 GH/s (1 hashes equals 1000 Megahash. 1GH/s = 1000 Mh/s) while consuming 60w of electricity. Compared to the GPU, it is an increase in computing power of 100 x and a reduction of power consumption by a factor of 7.
Unlike the generations of technologies that have preceded the ASIC, ASIC is the "end of the line" when we talk about important technology change. The CPUs have been replaced by the GPUs, themselves replaced by FPGAs that were replaced by ASICs.
There is nothing that can replace the ASICs now or in the immediate future. There will be technological refinements in ASIC products, and improvements in energy efficiency, but nothing that may match increased from 50 x to 100 x the computing power or a 7 x reduction in power consumption compared with the previous technology.
Which means that the energy efficiency of an ASIC device is the only important factor of all product ASIC, since the estimated lifetime of an ASIC device is superior to the entire history of the mining of bitcoin. It is conceivable that a purchased ASIC device today is still in operation in two years if the unit still offers a profitable enough economic to keep power consumption. The profitability of mining is also determined by the value of bitcoin but in all cases, more a device has a good energy efficiency, it is profitable.
Software :
There are two ways to make mining: by yourself or as part of a team (a pool). If you are mining for yourself, you must install the Bitcoin software and configure it to JSON-RPC (see: run Bitcoin). The other option is to join a pool. There are multiple available pools. With a pool, the profit generated by any block generated by a member of the team is split between all members of the team. The advantage of joining a team is to increase the frequency and stability of earnings (this is called reduce the variance) but gains will be lower. In the end, you will earn the same amount with the two approaches. Undermine solo allows you to receive earnings huge but very infrequent, while miner with a pool can offer you small stable and steady gains.
Once you have your software configured or that you have joined a pool, the next step is to configure the mining software. The software the most populare for ASIC/FPGA/GPU currently is CGminer or a derivative designed specifically for FPGAS and ASICs, BFGMiner.
If you want a quick overview of mining without install any software, try Bitcoin Plus, a Bitcoin minor running in your browser with your CPU. It is not profitable to make serious mining, but it is a good demonstration of the principle of the mining team.
submitted by Josephbitcoin to u/Josephbitcoin [link] [comments]

Mining. What will the “arms race” lead to?

The ten-year history of the blockchain has gradually convinced world experts that this phenomenon can still become the starting point for the transformation of the entire world economy. Perhaps this is still not a revolution and the technology is far from perfect.
But the main thing is that the precedent has been created and the development of alternatives in this direction is going on by leaps and bounds. The financial sphere is not the only one where the incentives are created by blockchain. A powerful infrastructure is built around it with attempts to implement technology into other spheres of human life. The production of crypto-currency, known to everyone as mining is one of such means. Cryptocurrency is the collective noun for digital currencies created on the basis of blockchain technology. For encryption, there is a special principle of cryptography, which protects information about transactions from theft and counterfeiting.
Mining is the process of cryptographic calculations with a use of special equipment. For Bitcoin and many other cryptocurrencies, it is the only way to maintain the integrity and workability of the system. Here is a brief description of the operating principle for the newcomers. Technology creates the ability to transfer value (information) from one user to another. At the same time, the transfer of non-existent value and the transfer of one unit to several addressees are excluded. The key to this is a large number of participants in the system and the economic motivation of the miners. Once a transaction is initiated in the system, it becomes visible to all participants. This transparency is both the main feature and the advantage of blockchain. No transaction is considered committed until the information about it gets into the so-called block and will be confirmed several times – this is the function that the miners provide. For a block to be considered generated, the program must compute a hash function – a unique alphanumeric code that contains information about the previous block. Thus, the distributed database in the blockchain is a chain of blocks, each of which refers to the previous one and stores the history of all transactions that occurred since the first coin appeared. Once the block takes its place in the chain, the miner who generated it receives a cryptocurrency reward – this is how coins are issued. In addition, the miners receive a commission from each transaction.
Blockchain – the technology of recording and storing information, when data is written in a continuous chain of blocks. It is based on the principle of distributed registries - information is copied and stored not on one server, but on all computers that are part of the blockchain system.
Now let's take a quick look at the evolution of mining, touching only the significant events. It all began in 2008, when an unknown programmer published a document on the network describing the algorithm of the quasi-monetary tool based on the technology of the blockchain. According to the published algorithm of Satoshi Nakamoto, the author of the document, the remuneration of the miners is reduced by 50% every 210 thousand of mined blocks. At that time, each newly generated block brought 50 new coins. Now more than 477 thousand blocks have been generated, and the reward for each new one has fallen to 12.5 BTC. It is expected that by 2140 year the reward will be so small that the issue will virtually stop and the volume of bitcoins will not exceed 21 million BTC. According to the idea of the creator, this will protect the cryptocurrency from inflation. It is unknown now whether Satoshi assumed or not how quickly his offspring would grow up. Mining on PC processors, the most massive chips in the world, supposed to make Bitcoin truly decentralized and popular. But for a while it still remained only the entertainment of geeks and enthusiasts. By 2010, the both Bitcoin exchange rate and popularity had grown so much that its mining started to yield a small income. Mining began to move to commercial sphere and the rivalry triggered technological race.
The Global Cryptocurrency Benchmarking Study research has shown that since Bitcoin appeared, the miners have earned more than $2 billion on mining and $14 billion on commissions from transactions.
In the summer of that year, a mining farm was first launched on the GPU and the first block was mined using parallel computations. Since then, the age of industrial mining began. Having smelt the money, miners around the world rushed to buy computer graphics cards. Despite the constant increase in equipment costs and attendant maintenance problems, the mining farms continue to attract new followers even now. According to the growing complexity of the cryptocurrency mining, pools, the miner unions, began to form. For one block search, a large number of farms with a high capacity are used, and the reward is divided due to the "labor participation" in it. The power consumption of one GPU is about 200 W, the average power of a medium farm is comparable or even higher than the equipment index in the data center. The problem of energy supply, as well as the noise level and heat that the equipment produces, does not allow the creation of large farms at home. For these reasons, mining has moved to warehousing areas where there is no problem with either noise or cooling, and electricity is available at industrial tariffs. The competition in the niche of the mining farms continues to increase, bringing new profits to the component manufacturers.
Farm is a data center that combines several video cards (GPUs). It shows high computing power, which allows several cryptocurrencies to be mined simultaneously.
In 2011, it became obvious that GPU farms consume too much electricity, require constant attention and additional costs. Enthusiasts were searching for solutions to reduce these expenses. The third mining business development iteration led to the appearance of miners on FPGA (Field Programmable Gate Array) chips. Such devices were quite expensive, but much more compact, stable and more energy efficient than the GPU farms. Energy consumption save was thousands of percent. But still, video cards remained the mass solution. Most likely the niche specialization of such machines was the impediment to their popularity. FPGA-miners did not last long and remained a niche product, which did not play a significant role in mass mining. But the developments of manufacturers of these devices were useful to ASIC-miners, which became the next generation of equipment for cryptocurrency mining. Unlike FPGAs, which are used for a variety of tasks, ASIC chips (Application Specific Integrated Cirquit) were designed to perform only one task. But they perform it much better than any farm. The difference in performance of similar devices makes tens of times. However, there is also a downside, which prevents the mass distribution of ASIC-miners - zero liquidity in the secondary market. They work according to the algorithm, which allows mining of only three cryptocurrencies known today. The production of this specific equipment lasts even now, but all producers have problems with delivery. This is indicated by the general complaints of customers at specialized forums. In the context of battered cryptocurrency rate, this factor strongly inhibits their sales. The "arms race" being an endless capacity build-up has reached the level when the most popular cryptocurrency mining is no longer economically justified. The current size of one Bitcoin block is 1 MB, which allows the system to process no more than seven transactions per second. Visa or MasterCard payment systems witness such index to reach about two thousand, with capacity expenses being several times lower. This makes the entire system clumsy and inconvenient, and increasing the commission from each transaction for the miners can ruin the Bitcoin economy, as well as any other coin economy.
ASIC – processors are manufactured with a special mining-friendly architecture. Such devices have a high payback rate and are easy to maintain. Among cons are low liquidity in the secondary market and rapid ASIC outdate due to the growing complexity of the network.
A complexity increase obviously cannot last forever and, sooner or later, there must be a transition to the next level. And this is the turning point where many questions may appear. What is the possible way of blockchain and mining development? This is important to understand, because an equipment worth hundreds of millions is at stake! What if it suddenly becomes useless? There are several assumptions. The first way is to reduce costs. Some hopes for this are provided by the development of alternative energy. Receiving freemium energy will reduce the cost of mining. This issue is regularly discussed on specialized forums. The creation of farms using solar, wind and geothermal power is still only at the stage of the concept. There have not been any major projects implemented. Due to the fact that the cost of equipment is still large, the entry threshold with such systems is very high, and the payback of equipment is still slow and thus risky. It is unlikely that this will become mainstream for the next five years, but the possibility of a breakthrough technology that makes renewable energy available, still exists. The second possible script is the abandonment of mining as a phenomenon. Bitcoin, which implies the efficiency of mining depending directly on the equipment productivity, uses the Proof-of-Work protocol. Some cryptocurrencies use the Proof-of-Stake protocol. They do not imply mining as a mandatory process at all. The system exists due to the circulation of cryptocurrency among users. By the way, this protocol is the one that Ethereum platform is planning to move to. This has already been stated by Vitalik Buterin, the creator of Ethereum: "When we move to the Proof-of-Stake protocol, the need for ether mining will drop sharply even at the first stage. Proof-of-Stake uses an algorithm which does not require that a large number of computers constantly make calculations. This is an algorithm where a coin is used inside the platform itself. The consensus will become much cheaper and safer. And in fact, miners can lose their business." Imagine the joy of computer gamers when suddenly the CPU prices fall dramatically! Now it is too early to speak about panic, but if the creators of other cryptocurrencies will consider this... The third way is to reduce the complexity of computation in the blockchain due to the use of alternative protocols of cryptography. Some industry enthusiasts are already working on such projects. If the complexity of the calculations goes beyond the reasonable, then why not change the operation of the system in general? So did, for example, the creators of Blockchain Ventureon.
Anton Sobor, the BDM of Ventureon, claimed: "The complexity of mining is laid by the blockchain creators themselves. What are they motivated by while creating such complicated algorithms? The answer remains unclear. The complexity has inconsiderable affect on safety. Creating our project, we proceed from the personal experience of our cryptography specialists, as well as from the principle of "necessary is enough". All the functions of the blockchain are preserved, with security only increasing, and complexity decreasing prominently."
It is also interesting that Ventureon mining does not require GPU. It is planned instead to create server-side mining pools, probably for easier and less expensive connection of the miners. This is likely to become a great advantage over another farms.
Of course, these are not all possible ways of mining industry development, but only the most vivid and obvious directions. There is one thing to say for sure. Mining being a mass business will exist only if the rate of specific cryptocurrencies increases. And this, in turn, depends on whether the blockchain will be accepted into the world economic system, as an alternative financial tool. The attempts to regulate the circulation of cryptocurrency at the level of individual states cause a strong resonance of the crypto community. That is perfectly visible on fluctuations of the rates of the basic cryptocurrencies. But, in my opinion, it is not possible to strangle the initiative of enthusiasts completely. The point of no return has been already reached. Blockchain as a phenomenon has been proved to be effective and will develop further, influencing the society strongly. And only time will tell what its future will be.
submitted by VentureOnICO to crypto_mining [link] [comments]

Frequently Asked Question: What's an ASIC, FPGA?

So you're sick of just mining on your GPU, and not a fan of the electric bill after a month of mining? There has to be a better option out there than your loud GPU in your gaming computer. There is!
Shortly after GPUs became popular for bitcoin mining, enterprising folks started looking at other things they can re-purpose to mine bitcoins more efficiently. Around mid-year 2011, the first devices sprang up that are called FPGAs or Field Programmable Gate Arrays. These are nothing new to the hobbyist community, they've been around for a while for crackers and other security-conscious folks looking at ways to defeat cryptographic locks. Hey! I know something that uses cryptographic calculations to secure its network! BITCOINS! Yep, so some miners developed their own boards and slapped some FPGA chips on them (most commonly the Spartan-6), and wrote specific firmware and "bitstreams" to more efficiently calculate bitcoin hashes. The first generations were sort of slow, but still they had better efficiency than a GPU. Some of the latest generation included the Icarus boards, Cairnsmore, x6500, and ModMiner Quad.
In early 2012(i think my timeline is right), Butterfly Labs(BFL) was selling their own FPGA miner that hashed at 800 Mhash/s using 80 watts and only cost US$600 amazing! These grew very popular, but people could see that FPGAs still weren't the most efficient way to hash their shares. BFL then announced that they would be designing their own chips that would be orders of magnitude faster than anything ever seen. These would be the ASICs (or Application Specific Integrated Circuit)everyone is raving about. ASICs are--as the name implies--specifically designed for one thing, and one thing only. Bitcoins. This is all it can do, and can't really be repurposed like an FPGA to other applications. Who wouldn't want a US$150 "Jalapeno" that hashes at 3.5 GIGAhashes/s using only power from a USB port?? Crazy! So summer 2012, BFL says they will ship before Christmas. Various things happen and we now still don't have any confirmed ship dates from BFL.
A few other companies have sprouted up, ASICminer which I believe is developing their own chips to mine themselves, but in a responsible way as to not threaten the network with a sudden influx of hashing. bASIC was a fiasco that was developed by the creator of the ModMiner Quad(which is actually a fantastic miner, I own one, and love it.) where he took many preorders, promised lots of people amazing ASIC performance, but in early 2013 the stress of the whole endeavour got to him and he gave up, refunded money(I think it's still being refunded now, or maybe it's been cleared up already.)
Avalon is the only company we know has ASIC mining hardware in the wild. It is not certain exactly how many are out there, but they have been confirmed by independent sources. The Avalon units are expensive(75 BTC) and have been in limited production runs (or batches) of a few hundred units that were pre-sold out very quickly.
All of this info is gleaned from the Custom Hardware forum over at bitcointalk.org over the past year or so I've been involved in bitcoin. I may have some facts wrong, but this is the gist of the situation and hopefully gives you an insight on the state of the hardware war against bitcoin
Thanks for reading!
submitted by purelithium to BitcoinMining [link] [comments]

Bitcoin Mining Explained What is an FPGA (Field Programmable Gate Array)?  FPGA ... Customizable Field Programmable Gate Array FPGA Market ... Bitcoin Miner Software - how to mine bitcoins faster !? FPGA Basics ( Field Programmable Gate Arrays)

Bitcoin Farm from FPGA (Field Programmable Gate Array) Such designs are a programmable matrix aimed at processing data at hyper speeds. Components do not take up much space, therefore, the second generation of bitcoin farms is characterized by more compact sizes. FPGAs are much more efficient than mining on GPUs and far superior to mining on ... The field programmed gate array processor is coupled to the CPU to enhance its computing power. When choosing hardware for bitcoin processing, make sure it has a large hash rate that provides users with amazing results. According to experts, the speed of data processing is measured in megabits per second or GIGA hash rate per second. FPGA stands for Field Programmable Gate Array. It is a circuit designed for configuration after building. This allows hardware manufacturer to buy chips in volumes and customize the chips for Bitcoin mining before installing them into their equipment. The performance of this hardware is far better than that of CPUs and GPUs. 3. ASIC Bitcoin Miners. Of the three types of Bitcoin miners, ASIC is ... Bitcoin mining is a transaction record process with bitcoins to blockchain – the public database of all the operations with Bitcoin, which is responsible for the transaction confirmation. Network nodes use blockchain to differ the real transactions from the attempt to spend the same facilities twice. The main mining objective is reaching a consensus between network nodes on which ... FPGA FPGA (Field Programmable Gate Array) mining is Bitcoin mining development was the introduction. It is built with microcircuit designed to be configured . This enabled a mining hardware ...

[index] [45487] [40335] [15032] [20967] [21349] [9144] [27809] [18842] [21510] [12438]

Bitcoin Mining Explained

Field programmable gate array (FPGA)/ VLSI design styles (in Hindi) - Duration: 7:08. StudyECE 1,547 views. 7:08. FPGA Project: Controlling a Gear DC motor with FPGA - Duration: 5:17. ... Origins of FPGA Alternative Architectures Project Development Communications Embedded Processors. FPGA's: As with the CPU to GPU transition, the bitcoin mining world progressed up the technology food chain to the Field Programmable Gate Array. With the successful launch of the Butterfly Labs ... Purchase your FPGA/SoC Development Board here: https://bit.ly/34LB1G6 What is an FPGA? Do you want to learn about Field Programmable Gate Arrays? Or, Maybe y... After that, the system became dominated by multi-graphics card systems, then field-programmable gate arrays (FPGAs) and finally application-specific integrated circuits (ASICs), in the attempt to ...

#