Bitcoin Records Biggest Network Difficulty Adjustment of ...

Digital Currency for a Digital Age

[Digitalcoin](http://digitalcoin.tech/) is a diligently maintained cryptocurrency intent on market stability, making it ideal for commerce and saving. Possible changes to Digitalcoin's parameters can be implemented upon community rule.
[link]

Aeon

AEON is a private, secure, untraceable currency. You are your bank, you control your funds, and nobody can trace your transfers.
[link]

Keep on minting my friends

http://www.mintcoinofficial.eu/ Mintcoin is a community owned and operated pure proof-of-stake crypto-coin. Save your coins in your wallet and earn the annual percentage rate while securing the Mintcoin network. Fast. Secure. Energy Efficient. Digital Internet Money. Mintcoins literally mint coins. Join us, we'll teach you how to mint coins. Start the process of minting your own coins today!
[link]

Bitcoin Cash Miners Leave Network for BTC Amid Difficulty Drop (current BTC/USD price is $6,641.21)

Latest Bitcoin News:
Bitcoin Cash Miners Leave Network for BTC Amid Difficulty Drop
Other Related Bitcoin Topics:
Bitcoin Price | Bitcoin Mining | Blockchain
The latest Bitcoin news has been sourced from the CoinSalad.com Bitcoin Price and News Events page. CoinSalad is a web service that provides real-time Bitcoin market info, charts, data and tools. Follow us on Twitter @CoinSalad.
submitted by coinsaladcom to CoinSalad [link] [comments]

Is Mining Bitcoin Still Profitable in 2020? Examining current profits, network difficulty, and more!

Is Mining Bitcoin Still Profitable in 2020? Examining current profits, network difficulty, and more! submitted by VoskCoin to Bitcoin [link] [comments]

At current state-of-the-art Bitcoin ASIC miner efficiency, the network hash rate will increase until it hits around 1243 PH/s (1,243,360 TH/s) (difficulty 168 billion)

We know the efficiency of the newest ASICs. Miners will keep adding capacity until their margins are fairly low, say 20% more than their electricity costs.
Bitfury's new miner only uses 0.8J/GH (here it uses 1J/GH, but they're underclocking the chips in final devices to reach 0.8J/GH). With an electricity price of $0.1/kWh, that means miners want to make at least $0.12 per kWh spent.
0.8J / GH
1 kWh = 3600000 J
So mining for one day at 1 GH/s at 0.8J / GH uses 3600*24*0.8J:
69120J / GH/s for 1 day
which, in kWh, is:
0.0192 kWh / GH/s for 1 day
so to spend 1 kWh per day we can mine at 1/0.0192 GH/s for 1 day:
1 kWh / 52 GH/s for 1 day
Mining at 52 GH/s for 1 day currently makes $78.53 (at the next difficulty of 25.7M).
So in order for it to only produce $0.12 (which miners are willing to go down to), network hash rate would have to increase by a factor of 78.53/0.012 = 6544
So at current ASIC efficiency (using Bitfury as an example), the difficulty will increase to 168 billion (168,000M) until miners' margins are 20% (at current BTC prices).
This will bring the network hashrate up to 1243 PH/s (1,243,360 TH/s).
submitted by runeks to Bitcoin [link] [comments]

How can I query the Bitcoin Network for information like current difficulty, current hashpower, etc? /r/btc

How can I query the Bitcoin Network for information like current difficulty, current hashpower, etc? /btc submitted by BitcoinAllBot to BitcoinAll [link] [comments]

How do I estimate network hashing power using the current difficulty and the average number of blocks found during a time period? /r/Bitcoin

How do I estimate network hashing power using the current difficulty and the average number of blocks found during a time period? /Bitcoin submitted by BitcoinAllBot to BitcoinAll [link] [comments]

Gridcoin 5.0.0.0-Mandatory "Fern" Release

https://github.com/gridcoin-community/Gridcoin-Research/releases/tag/5.0.0.0
Finally! After over ten months of development and testing, "Fern" has arrived! This is a whopper. 240 pull requests merged. Essentially a complete rewrite that was started with the scraper (the "neural net" rewrite) in "Denise" has now been completed. Practically the ENTIRE Gridcoin specific codebase resting on top of the vanilla Bitcoin/Peercoin/Blackcoin vanilla PoS code has been rewritten. This removes the team requirement at last (see below), although there are many other important improvements besides that.
Fern was a monumental undertaking. We had to encode all of the old rules active for the v10 block protocol in new code and ensure that the new code was 100% compatible. This had to be done in such a way as to clear out all of the old spaghetti and ring-fence it with tightly controlled class implementations. We then wrote an entirely new, simplified ruleset for research rewards and reengineered contracts (which includes beacon management, polls, and voting) using properly classed code. The fundamentals of Gridcoin with this release are now on a very sound and maintainable footing, and the developers believe the codebase as updated here will serve as the fundamental basis for Gridcoin's future roadmap.
We have been testing this for MONTHS on testnet in various stages. The v10 (legacy) compatibility code has been running on testnet continuously as it was developed to ensure compatibility with existing nodes. During the last few months, we have done two private testnet forks and then the full public testnet testing for v11 code (the new protocol which is what Fern implements). The developers have also been running non-staking "sentinel" nodes on mainnet with this code to verify that the consensus rules are problem-free for the legacy compatibility code on the broader mainnet. We believe this amount of testing is going to result in a smooth rollout.
Given the amount of changes in Fern, I am presenting TWO changelogs below. One is high level, which summarizes the most significant changes in the protocol. The second changelog is the detailed one in the usual format, and gives you an inkling of the size of this release.

Highlights

Protocol

Note that the protocol changes will not become active until we cross the hard-fork transition height to v11, which has been set at 2053000. Given current average block spacing, this should happen around October 4, about one month from now.
Note that to get all of the beacons in the network on the new protocol, we are requiring ALL beacons to be validated. A two week (14 day) grace period is provided by the code, starting at the time of the transition height, for people currently holding a beacon to validate the beacon and prevent it from expiring. That means that EVERY CRUNCHER must advertise and validate their beacon AFTER the v11 transition (around Oct 4th) and BEFORE October 18th (or more precisely, 14 days from the actual date of the v11 transition). If you do not advertise and validate your beacon by this time, your beacon will expire and you will stop earning research rewards until you advertise and validate a new beacon. This process has been made much easier by a brand new beacon "wizard" that helps manage beacon advertisements and renewals. Once a beacon has been validated and is a v11 protocol beacon, the normal 180 day expiration rules apply. Note, however, that the 180 day expiration on research rewards has been removed with the Fern update. This means that while your beacon might expire after 180 days, your earned research rewards will be retained and can be claimed by advertising a beacon with the same CPID and going through the validation process again. In other words, you do not lose any earned research rewards if you do not stake a block within 180 days and keep your beacon up-to-date.
The transition height is also when the team requirement will be relaxed for the network.

GUI

Besides the beacon wizard, there are a number of improvements to the GUI, including new UI transaction types (and icons) for staking the superblock, sidestake sends, beacon advertisement, voting, poll creation, and transactions with a message. The main screen has been revamped with a better summary section, and better status icons. Several changes under the hood have improved GUI performance. And finally, the diagnostics have been revamped.

Blockchain

The wallet sync speed has been DRASTICALLY improved. A decent machine with a good network connection should be able to sync the entire mainnet blockchain in less than 4 hours. A fast machine with a really fast network connection and a good SSD can do it in about 2.5 hours. One of our goals was to reduce or eliminate the reliance on snapshots for mainnet, and I think we have accomplished that goal with the new sync speed. We have also streamlined the in-memory structures for the blockchain which shaves some memory use.
There are so many goodies here it is hard to summarize them all.
I would like to thank all of the contributors to this release, but especially thank @cyrossignol, whose incredible contributions formed the backbone of this release. I would also like to pay special thanks to @barton2526, @caraka, and @Quezacoatl1, who tirelessly helped during the testing and polishing phase on testnet with testing and repeated builds for all architectures.
The developers are proud to present this release to the community and we believe this represents the starting point for a true renaissance for Gridcoin!

Summary Changelog

Accrual

Changed

Most significantly, nodes calculate research rewards directly from the magnitudes in EACH superblock between stakes instead of using a two- or three- point average based on a CPID's current magnitude and the magnitude for the CPID when it last staked. For those long-timers in the community, this has been referred to as "Superblock Windows," and was first done in proof-of-concept form by @denravonska.

Removed

Beacons

Added

Changed

Removed

Unaltered

As a reminder:

Superblocks

Added

Changed

Removed

Voting

Added

Changed

Removed

Detailed Changelog

[5.0.0.0] 2020-09-03, mandatory, "Fern"

Added

Changed

Removed

Fixed

submitted by jamescowens to gridcoin [link] [comments]

Taproot, CoinJoins, and Cross-Input Signature Aggregation

It is a very common misconception that the upcoming Taproot upgrade helps CoinJoin.
TLDR: The upcoming Taproot upgrade does not help equal-valued CoinJoin at all, though it potentially increases the privacy of other protocols, such as the Lightning Network, and escrow contract schemes.
If you want to learn more, read on!

Equal-valued CoinJoins

Let's start with equal-valued CoinJoins, the type JoinMarket and Wasabi use. What happens is that some number of participants agree on some common value all of them use. With JoinMarket the taker defines this value and pays the makers to agree to it, with Wasabi the server defines a value approximately 0.1 BTC.
Then, each participant provides inputs that they unilaterally control, totaling equal or greater than the common value. Typically since each input is unilaterally controlled, each input just requires a singlesig. Each participant also provides up to two addresses they control: one of these will be paid with the common value, while the other will be used for any extra value in the inputs they provided (i.e. the change output).
The participants then make a single transaction that spends all the provided inputs and pays out to the appropriate outputs. The inputs and outputs are shuffled in some secure manner. Then the unsigned transaction is distributed back to all participants.
Finally, each participant checks that the transaction spends the inputs it provided (and more importantly does not spend any other coins it might own that it did not provide for this CoinJoin!) and that the transaction pays out to the appropriate address(es) it controls. Once they have validated the transaction, they ratify it by signing for each of the inputs it provided.
Once every participant has provided signatures for all inputs it registered, the transaction is now completely signed and the CoinJoin transaction is now validly confirmable.
CoinJoin is a very simple and direct privacy boost, it requires no SCRIPTs, needs only singlesig, etc.

Privacy

Let's say we have two participants who have agreed on a common amount of 0.1 BTC. One provides a 0.105 coin as input, the other provides a 0.114 coin as input. This results in a CoinJoin with a 0.105 coin and a 0.114 coin as input, and outputs with 0.1, 0.005, 0.014, and 0.1 BTC.
Now obviously the 0.005 output came from the 0.105 input, and the 0.014 output came from the 0.114 input.
But the two 0.1 BTC outputs cannot be correlated with either input! There is no correlating information, since either output could have come from either input. That is how common CoinJoin implementations like Wasabi and JoinMarket gain privacy.

Banning CoinJoins

Unfortunately, large-scale CoinJoins like that made by Wasabi and JoinMarket are very obvious.
All you have to do is look for a transactions where, say, more than 3 outputs are the same equal value, and the number of inputs is equal or larger than the number of equal-valued outputs. Thus, it is trivial to identify equal-valued CoinJoins made by Wasabi and JoinMarket. You can even trivially differentiate them: Wasabi equal-valued CoinJoins are going to have a hundred or more inputs, with outputs that are in units of approximately 0.1 BTC, while JoinMarket CoinJoins have equal-valued outputs of less than a dozen (between 4 to 6 usually) and with the common value varying wildly from as low as 0.001 BTC to as high as a dozen BTC or more.
This has led to a number of anti-privacy exchanges to refuse to credit custodially-held accounts if the incoming deposit is within a few hops of an equal-valued CoinJoin, usually citing concerns about regulations. Crucially, the exchange continues to hold private keys for those "banned" deposits, and can still spend them, thus this is effectively a theft. If your exchange does this to you, you should report that exchange as stealing money from its customers. Not your keys not your coins.
Thus, CoinJoins represent a privacy tradeoff:

Taproot

Let's now briefly discuss that nice new shiny thing called Taproot.
Taproot includes two components:
This has some nice properties:

Taproot DOES NOT HELP CoinJoin

So let's review!
CoinJoin:
Taproot:
There is absolutely no overlap. Taproot helps things that CoinJoin does not use. CoinJoin uses things that Taproot does not improve.

B-but They Said!!

A lot of early reporting on Taproot claimed that Taproot benefits CoinJoin.
What they are confusing is that earlier drafts of Taproot included a feature called cross-input signature aggregation.
In current Bitcoin, every input, to be spent, has to be signed individually. With cross-input signature aggregation, all inputs that support this feature are signed with a single signature that covers all those inputs. So for example if you would spend two inputs, current Bitcoin requires a signature for each input, but with cross-input signature aggregation you can sign both of them with a single signature. This works even if the inputs have different public keys: two inputs with cross-input signature aggregation effectively define a 2-of-2 public key, and you can only sign for that input if you know the private keys for both inputs, or if you are cooperatively signing with somebody who knows the private key of the other input.
This helps CoinJoin costs. Since CoinJoins will have lots of inputs (each participant will provide at least one, and probably will provide more, and larger participant sets are better for more privacy in CoinJoin), if all of them enabled cross-input signature aggregation, such large CoinJoins can have only a single signature.
This complicates the signing process for CoinJoins (the signers now have to sign cooperatively) but it can be well worth it for the reduced signature size and onchain cost.
But note that the while cross-input signature aggregation improves the cost of CoinJoins, it does not improve the privacy! Equal-valued CoinJoins are still obvious and still readily bannable by privacy-hating exchanges. It does not improve the privacy of CoinJoin. Instead, see https://old.reddit.com/Bitcoin/comments/gqb3udesign_for_a_coinswap_implementation_fo

Why isn't cross-input signature aggregation in?

There's some fairly complex technical reasons why cross-input signature aggregation isn't in right now in the current Taproot proposal.
The primary reason was to reduce the technical complexity of Taproot, in the hope that it would be easier to convince users to activate (while support for Taproot is quite high, developers have become wary of being hopeful that new proposals will ever activate, given the previous difficulties with SegWit).
The main technical complexity here is that it interacts with future ways to extend Bitcoin.
The rest of this writeup assumes you already know about how Bitcoin SCRIPT works. If you don't understand how Bitcoin SCRIPT works at the low-level, then the TLDR is that cross-input signature aggregation complicates how to extend Bitcoin in the future, so it was deferred to let the develoeprs think more about it.
(this is how I understand it; perhaps pwuille or ajtowns can give a better summary.)
In detail, Taproot also introduces OP_SUCCESS opcodes. If you know about the OP_NOP opcodes already defined in current Bitcoin, well, OP_SUCCESS is basically "OP_NOP done right".
Now, OP_NOP is a do-nothing operation. It can be replaced in future versions of Bitcoin by having that operation check some condition, and then fail if the condition is not satisfied. For example, both OP_CHECKLOCKTIMEVERIFY and OP_CHECKSEQUENCEVERIFY were previously OP_NOP opcodes. Older nodes will see an OP_CHECKLOCKTIMEVERIFY and think it does nothing, but newer nodes will check if the nLockTime field has a correct specified value, and fail if the condition is not satisfied. Since most of the nodes on the network are using much newer versions of the node software, older nodes are protected from miners who try to misspend any OP_CHECKLOCKTIMEVERIFY/OP_CHECKSEQUENCEVERIFY, and those older nodes will still remain capable of synching with the rest of the network: a dedication to strict backward-compatibility necessary for a consensus system.
Softforks basically mean that a script that passes in the latest version must also be passing in all older versions. A script cannot be passing in newer versions but failing in older versions, because that would kick older nodes off the network (i.e. it would be a hardfork).
But OP_NOP is a very restricted way of adding opcodes. Opcodes that replace OP_NOP can only do one thing: check if some condition is true. They can't push new data on the stack, they can't pop items off the stack. For example, suppose instead of OP_CHECKLOCKTIMEVERIFY, we had added a OP_GETBLOCKHEIGHT opcode. This opcode would push the height of the blockchain on the stack. If this command replaced an older OP_NOP opcode, then a script like OP_GETBLOCKHEIGHT 650000 OP_EQUAL might pass in some future Bitcoin version, but older versions would see OP_NOP 650000 OP_EQUAL, which would fail because OP_EQUAL expects two items on the stack. So older versions will fail a SCRIPT that newer versions will pass, which is a hardfork and thus a backwards incompatibility.
OP_SUCCESS is different. Instead, old nodes, when parsing the SCRIPT, will see OP_SUCCESS, and, without executing the body, will consider the SCRIPT as passing. So, the OP_GETBLOCKHEIGHT 650000 OP_EQUAL example will now work: a future version of Bitcoin might pass it, and existing nodes that don't understand OP_GETBLOCKHEIGHT will se OP_SUCCESS 650000 OP_EQUAL, and will not execute the SCRIPT at all, instead passing it immediately. So a SCRIPT that might pass in newer versions will pass for older versions, which keeps the back-compatibility consensus that a softfork needs.
So how does OP_SUCCESS make things difficult for cross-input signatur aggregation? Well, one of the ways to ask for a signature to be verified is via the opcodes OP_CHECKSIGVERIFY. With cross-input signature aggregation, if a public key indicates it can be used for cross-input signature aggregation, instead of OP_CHECKSIGVERIFY actually requiring the signature on the stack, the stack will contain a dummy 0 value for the signature, and the public key is instead added to a "sum" public key (i.e. an n-of-n that is dynamically extended by one more pubkey for each OP_CHECKSIGVERIFY operation that executes) for the single signature that is verified later by the cross-input signature aggregation validation algorithm00.
The important part here is that the OP_CHECKSIGVERIFY has to execute, in order to add its public key to the set of public keys to be checked in the single signature.
But remember that an OP_SUCCESS prevents execution! As soon as the SCRIPT is parsed, if any opcode is OP_SUCCESS, that is considered as passing, without actually executing the SCRIPT, because the OP_SUCCESS could mean something completely different in newer versions and current versions should assume nothing about what it means. If the SCRIPT contains some OP_CHECKSIGVERIFY command in addition to an OP_SUCCESS, that command is not executed by current versions, and thus they cannot add any public keys given by OP_CHECKSIGVERIFY. Future versions also have to accept that: if they parsed an OP_SUCCESS command that has a new meaning in the future, and then execute an OP_CHECKSIGVERIFY in that SCRIPT, they cannot add the public key into the same "sum" public key that older nodes use, because older nodes cannot see them. This means that you might need more than one signature in the future, in the presence of an opcode that replaces some OP_SUCCESS.
Thus, because of the complexity of making cross-input signature aggregation work compatibly with future extensions to the protocol, cross-input signature aggregation was deferred.
submitted by almkglor to Bitcoin [link] [comments]

BCH Unlimited 1.9.0 has just been released

Download the latest Bitcoin Cash compatible release of BCH Unlimited (1.9.0, August 26th, 2020) from:
 
https://www.bitcoinunlimited.info/download
https://github.com/BitcoinUnlimited/BitcoinUnlimited/releases/tag/BCHunlimited1.9.0.0
 
This is a major release of BCH Unlimited compatible with the upcoming protocol upgrade of the Bitcoin Cash network. You could find November 15th, 2020 upgrade specifications here:
BCH Unlimited 1.9.0 is against and is not going to implement the 8% IFP tax proposed by Bitcoin ABC
This is list of the main changes that have been merged in this release:
 
Release notes:
https://github.com/BitcoinUnlimited/BitcoinUnlimited/blob/dev/doc/release-notes/release-notes-1.9.0.md
 
PS Ubuntu PPA repository is currently being updated to serve for 1.9.0.
submitted by s1ckpig to btc [link] [comments]

Bitcoin Network Status Update Sunday, October 25, 2020

Status of the Bitcoin network as of Sunday, October 25, 2020 at 12:00:01 EST:

Total bitcoins: 18,526,527.294971
Height: 654,257
Difficulty: 19,997,335,994,446.109375
Statistics for the past 24 hours:
Number of blocks mined: 125
Total bitcoins output (amount sent): 1,658,175.166708
Total fees: 73.848441
Average time until block found: 11 minutes, 31 seconds
Estimated hashrate: 124,259,120,440.250900 gh/s
Current price: US$12,948.43
Data provided by Smartbit.com.au. Price data provided by Coinbase.com.
I am a bot. My commands | /crypto_bot | Message my creator | Source code
submitted by crypto_bot to Bitcoin [link] [comments]

I built a decentralized legal-binding smart contract system. I need peer reviewers and whitepaper proof readers. Help greatly appreciated!

I posted this on /cryptotechnology . It attracted quite a bit of upvotes but not many potential contributors. Someone mentioned I should try this sub. I read the rules and it seems to fit within them. Hope this kind of post is alright here...
EDIT: My mother language is french (I'm from Montreal/Canada). Please excuse any blatant grammatical errors.
TLDR: I built a decentralized legal-binding smart contract system. I need peer reviewers and whitepaper proof readers. If you're interested, send me an email to discuss: [email protected] . Thanks in advance!
Hi guys,
For the last few years, I've been working on a decentralized legal-binding contract system. Basically, I created a PoW blockchain software that can receive a hash as an address, and another hash as a bucket, in each transaction.
The address hash is used to tell a specific entity (application/contract/company/person, etc) that uses the blockchain that this transaction might be addressed to them. The bucket hash simply tells the nodes which hashtree of files they need to download in order to execute that contract.
The buckets are shared within the network of nodes. Someone could, for example, write a contract with a series of nodes in order to host their data for them. Buckets can hold any kind of data, and can be of any size... including encrypted data.
The blockchain's blocks are chained together using a mining system similar to bitcoin (hashcash algorithm). Each block contains transactions. The requested difficulty increases when the amount of transactions in a block increases, linearly. Then, when a block is mined properly, another smaller mining effort is requested to link the block to the network's head block.
To replace a block, you need to create another block with more transactions than the amount that were transacted in and after the mined block.
I expect current payment processors to begin accepting transactions and mine them for their customers and make money with fees, in parallel. Using such a mechanism, miners will need to have a lot of bandwidth available in order to keep downloading the blocks of other miners, just like the current payment processors.
The contracts is code written in our custom programming language. Their code is pushed using a transaction, and hosted in buckets. Like you can see, the contract's data are off-chain, only its bucket hash is on-chain. The contract can be used to listen to events that occurs on the blockchain, in any buckets hosted by nodes or on any website that can be crawled and parsed in the contract.
There is also an identity system and a vouching system...which enable the creation of soft-money (promise of future payment in hard money (our cryptocurrency) if a series of events arrive).
The contracts can also be compiled to a legal-binding framework and be potentially be used in court. The contracts currently compile to english and french only.
I also built a browser that contains a 3D viewport, using OpenGL. The browser contains a domain name system (DNS) in form of contracts. Anyone can buy a new domain by creating a transaction with a bucket that contains code to reserve a specific name. When a user request a domain name, it discovers the bucket that is attached to the domain, download that bucket and executes its scripts... which renders in the 3D viewport.
When people interact with an application, the application can create contracts on behalf of the user and send them to the blockchain via a transaction. This enables normal users (non-developers) to interact with others using legal contracts, by using a GUI software.
The hard money (cryptocurrency) is all pre-mined and will be sold to entities (people/company) that want to use the network. The hard money can be re-sold using the contract proposition system, for payment in cash or a bank transfer. The fiat funds will go to my company in order to create services that use this specific network of contracts. The goal is to use the funds to make the network grow and increase its demand in hard money. For now, we plan to create:
A logistic and transportation company
A delivery company
A company that buy and sell real estate options
A company that manage real estate
A software development company
A world-wide fiat money transfer company
A payment processor company
We chose these niche because our team has a lot of experience in these areas: we currently run companies in these fields. These niche also generate a lot of revenue and expenses, making the value of exchanges high. We expect this to drive volume in contracts, soft-money and hard-money exchanges.
We also plan to use the funds to create a venture capital fund that invests in startups that wants to create contracts on our network to execute a specific service in a specific niche.
I'm about to release the software open source very soon and begin executing our commercial activities on the network. Before launching, I'd like to open a discussion with the community regarding the details of how this software works and how it is explained in the whitepaper.
If you'd like to read the whitepaper and open a discussion with me regarding how things work, please send me an email at [email protected] .
If you have any comment, please comment below and Ill try to answer every question. Please note that before peer-reviewing the software and the whitepaper, I'd like to keep the specific details of the software private, but can discuss the general details. A release date will be given once my work has been peer reviewed.
Thanks all in advance!
P.S: This project is not a competition to bitcoin. My goal with this project is to enable companies to write contracts together, easily follow events that are executed in their contracts, understand what to expect from their partnership and what they need to give in order to receive their share of deals... and sell their contracts that they no longer need to other community members.
Bitcoin already has a network of people that uses it. It has its own value. In fact, I plan to create contracts on our network to exchange value from our network for bitcoin and vice-versa. Same for any commodity and currency that currently exits in this world.
submitted by steve-rodrigue to compsci [link] [comments]

Bitcoin Network Status Update Wednesday, October 28, 2020

Status of the Bitcoin network as of Wednesday, October 28, 2020 at 12:00:01 EST:

Total bitcoins: 18,528,427.294971
Height: 654,561
Difficulty: 19,997,335,994,446.109375
Statistics for the past 24 hours:
Number of blocks mined: 99
Total bitcoins output (amount sent): 2,435,746.943385
Total fees: 212.295231
Average time until block found: 14 minutes, 32 seconds
Estimated hashrate: 98,413,223,451.663177 gh/s
Current price: US$13,220.66
Data provided by Smartbit.com.au. Price data provided by Coinbase.com.
I am a bot. My commands | /crypto_bot | Message my creator | Source code
submitted by crypto_bot to Bitcoin [link] [comments]

Bitcoin Network Status Update Friday, October 23, 2020

Status of the Bitcoin network as of Friday, October 23, 2020 at 12:00:01 EST:

Total bitcoins: 18,524,758.544971
Height: 653,974
Difficulty: 19,997,335,994,446.109375
Statistics for the past 24 hours:
Number of blocks mined: 122
Total bitcoins output (amount sent): 2,958,452.820424
Total fees: 139.985115
Average time until block found: 11 minutes, 48 seconds
Estimated hashrate: 121,276,901,595.491760 gh/s
Current price: US$12,920.01
Data provided by Smartbit.com.au. Price data provided by Coinbase.com.
I am a bot. My commands | /crypto_bot | Message my creator | Source code
submitted by crypto_bot to Bitcoin [link] [comments]

Bitcoin Network Status Update Saturday, October 10, 2020

Status of the Bitcoin network as of Saturday, October 10, 2020 at 12:00:01 EST:

Total bitcoins: 18,513,183.544971
Height: 652,122
Difficulty: 19,298,087,186,262.609375
Statistics for the past 24 hours:
Number of blocks mined: 150
Total bitcoins output (amount sent): 2,438,916.944823
Total fees: 97.455885
Average time until block found: 9 minutes, 35 seconds
Estimated hashrate: 143,896,967,512.688171 gh/s
Current price: US$11,356.69
Data provided by Smartbit.com.au. Price data provided by Coinbase.com.
I am a bot. My commands | /crypto_bot | Message my creator | Source code
submitted by crypto_bot to Bitcoin [link] [comments]

Bitcoin Network Status Update Tuesday, October 20, 2020

Status of the Bitcoin network as of Tuesday, October 20, 2020 at 12:00:02 EST:

Total bitcoins: 18,522,302.294971
Height: 653,581
Difficulty: 19,997,335,994,446.109375
Statistics for the past 24 hours:
Number of blocks mined: 146
Total bitcoins output (amount sent): 4,003,711.631622
Total fees: 63.809445
Average time until block found: 9 minutes, 51 seconds
Estimated hashrate: 145,134,652,639.857880 gh/s
Current price: US$11,929.76
Data provided by Smartbit.com.au. Price data provided by Coinbase.com.
I am a bot. My commands | /crypto_bot | Message my creator | Source code
submitted by crypto_bot to Bitcoin [link] [comments]

Bitcoin Network Status Update Tuesday, October 27, 2020

Status of the Bitcoin network as of Tuesday, October 27, 2020 at 12:00:02 EST:

Total bitcoins: 18,527,808.544971
Height: 654,462
Difficulty: 19,997,335,994,446.109375
Statistics for the past 24 hours:
Number of blocks mined: 94
Total bitcoins output (amount sent): 2,307,395.734989
Total fees: 164.992869
Average time until block found: 15 minutes, 19 seconds
Estimated hashrate: 93,442,858,519.535934 gh/s
Current price: US$13,560.04
Data provided by Smartbit.com.au. Price data provided by Coinbase.com.
I am a bot. My commands | /crypto_bot | Message my creator | Source code
submitted by crypto_bot to Bitcoin [link] [comments]

Bitcoin Network Status Update Thursday, October 22, 2020

Status of the Bitcoin network as of Thursday, October 22, 2020 at 12:00:01 EST:

Total bitcoins: 18,523,996.044971
Height: 653,852
Difficulty: 19,997,335,994,446.109375
Statistics for the past 24 hours:
Number of blocks mined: 138
Total bitcoins output (amount sent): 3,967,120.903250
Total fees: 165.676414
Average time until block found: 10 minutes, 26 seconds
Estimated hashrate: 137,182,069,006.118011 gh/s
Current price: US$12,948.73
Data provided by Smartbit.com.au. Price data provided by Coinbase.com.
I am a bot. My commands | /crypto_bot | Message my creator | Source code
submitted by crypto_bot to Bitcoin [link] [comments]

Bitcoin Network Status Update Monday, October 26, 2020

Status of the Bitcoin network as of Monday, October 26, 2020 at 12:00:01 EST:

Total bitcoins: 18,527,221.044971
Height: 654,368
Difficulty: 19,997,335,994,446.109375
Statistics for the past 24 hours:
Number of blocks mined: 111
Total bitcoins output (amount sent): 2,528,670.753500
Total fees: 78.512517
Average time until block found: 12 minutes, 58 seconds
Estimated hashrate: 110,342,098,973.846237 gh/s
Current price: US$12,966.60
Data provided by Smartbit.com.au. Price data provided by Coinbase.com.
I am a bot. My commands | /crypto_bot | Message my creator | Source code
submitted by crypto_bot to Bitcoin [link] [comments]

How EpiK Protocol “Saved the Miners” from Filecoin with the E2P Storage Model?

How EpiK Protocol “Saved the Miners” from Filecoin with the E2P Storage Model?

https://preview.redd.it/n5jzxozn27v51.png?width=2222&format=png&auto=webp&s=6cd6bd726582bbe2c595e1e467aeb3fc8aabe36f
On October 20, Eric Yao, Head of EpiK China, and Leo, Co-Founder & CTO of EpiK, visited Deep Chain Online Salon, and discussed “How EpiK saved the miners eliminated by Filecoin by launching E2P storage model”. ‘?” The following is a transcript of the sharing.
Sharing Session
Eric: Hello, everyone, I’m Eric, graduated from School of Information Science, Tsinghua University. My Master’s research was on data storage and big data computing, and I published a number of industry top conference papers.
Since 2013, I have invested in Bitcoin, Ethereum, Ripple, Dogcoin, EOS and other well-known blockchain projects, and have been settling in the chain circle as an early technology-based investor and industry observer with 2 years of blockchain experience. I am also a blockchain community initiator and technology evangelist
Leo: Hi, I’m Leo, I’m the CTO of EpiK. Before I got involved in founding EpiK, I spent 3 to 4 years working on blockchain, public chain, wallets, browsers, decentralized exchanges, task distribution platforms, smart contracts, etc., and I’ve made some great products. EpiK is an answer to the question we’ve been asking for years about how blockchain should be landed, and we hope that EpiK is fortunate enough to be an answer for you as well.
Q & A
Deep Chain Finance:
First of all, let me ask Eric, on October 15, Filecoin’s main website launched, which aroused everyone’s attention, but at the same time, the calls for fork within Filecoin never stopped. The EpiK protocol is one of them. What I want to know is, what kind of project is EpiK Protocol? For what reason did you choose to fork in the first place? What are the differences between the forked project and Filecoin itself?
Eric:
First of all, let me answer the first question, what kind of project is EpiK Protocol.
With the Fourth Industrial Revolution already upon us, comprehensive intelligence is one of the core goals of this stage, and the key to comprehensive intelligence is how to make machines understand what humans know and learn new knowledge based on what they already know. And the knowledge graph scale is a key step towards full intelligence.
In order to solve the many challenges of building large-scale knowledge graphs, the EpiK Protocol was born. EpiK Protocol is a decentralized, hyper-scale knowledge graph that organizes and incentivizes knowledge through decentralized storage technology, decentralized autonomous organizations, and generalized economic models. Members of the global community will expand the horizons of artificial intelligence into a smarter future by organizing all areas of human knowledge into a knowledge map that will be shared and continuously updated for the eternal knowledge vault of humanity
And then, for what reason was the fork chosen in the first place?
EpiK’s project founders are all senior blockchain industry practitioners and have been closely following the industry development and application scenarios, among which decentralized storage is a very fresh application scenario.
However, in the development process of Filecoin, the team found that due to some design mechanisms and historical reasons, the team found that Filecoin had some deviations from the original intention of the project at that time, such as the overly harsh penalty mechanism triggered by the threat to weaken security, and the emergence of the computing power competition leading to the emergence of computing power monopoly by large miners, thus monopolizing the packaging rights, which can be brushed with computing power by uploading useless data themselves.
The emergence of these problems will cause the data environment on Filecoin to get worse and worse, which will lead to the lack of real value of the data in the chain, high data redundancy, and the difficulty of commercializing the project to land.
After paying attention to the above problems, the project owner proposes to introduce multi-party roles and a decentralized collaboration platform DAO to ensure the high value of the data on the chain through a reasonable economic model and incentive mechanism, and store the high-value data: knowledge graph on the blockchain through decentralized storage, so that the lack of value of the data on the chain and the monopoly of large miners’ computing power can be solved to a large extent.
Finally, what differences exist between the forked project and Filecoin itself?
On the basis of the above-mentioned issues, EpiK’s design is very different from Filecoin, first of all, EpiK is more focused in terms of business model, and it faces a different market and track from the cloud storage market where Filecoin is located because decentralized storage has no advantage over professional centralized cloud storage in terms of storage cost and user experience.
EpiK focuses on building a decentralized knowledge graph, which reduces data redundancy and safeguards the value of data in the distributed storage chain while preventing the knowledge graph from being tampered with by a few people, thus making the commercialization of the entire project reasonable and feasible.
From the perspective of ecological construction, EpiK treats miners more friendly and solves the pain point of Filecoin to a large extent, firstly, it changes the storage collateral and commitment collateral of Filecoin to one-time collateral.
Miners participating in EpiK Protocol are only required to pledge 1000 EPK per miner, and only once before mining, not in each sector.
What is the concept of 1000 EPKs, you only need to participate in pre-mining for about 50 days to get this portion of the tokens used for pledging. The EPK pre-mining campaign is currently underway, and it runs from early September to December, with a daily release of 50,000 ERC-20 standard EPKs, and the pre-mining nodes whose applications are approved will divide these tokens according to the mining ratio of the day, and these tokens can be exchanged 1:1 directly after they are launched on the main network. This move will continue to expand the number of miners eligible to participate in EPK mining.
Secondly, EpiK has a more lenient penalty mechanism, which is different from Filecoin’s official consensus, storage and contract penalties, because the protocol can only be uploaded by field experts, which is the “Expert to Person” mode. Every miner needs to be backed up, which means that if one or more miners are offline in the network, it will not have much impact on the network, and the miner who fails to upload the proof of time and space in time due to being offline will only be forfeited by the authorities for the effective computing power of this sector, not forfeiting the pledged coins.
If the miner can re-submit the proof of time and space within 28 days, he will regain the power.
Unlike Filecoin’s 32GB sectors, EpiK’s encapsulated sectors are smaller, only 8M each, which will solve Filecoin’s sector space wastage problem to a great extent, and all miners have the opportunity to complete the fast encapsulation, which is very friendly to miners with small computing power.
The data and quality constraints will also ensure that the effective computing power gap between large and small miners will not be closed.
Finally, unlike Filecoin’s P2P data uploading model, EpiK changes the data uploading and maintenance to E2P uploading, that is, field experts upload and ensure the quality and value of the data on the chain, and at the same time introduce the game relationship between data storage roles and data generation roles through a rational economic model to ensure the stability of the whole system and the continuous high-quality output of the data on the chain.
Deep Chain Finance:
Eric, on the eve of Filecoin’s mainline launch, issues such as Filecoin’s pre-collateral have aroused a lot of controversy among the miners. In your opinion, what kind of impact will Filecoin bring to itself and the whole distributed storage ecosystem after it launches? Do you think that the current confusing FIL prices are reasonable and what should be the normal price of FIL?
Eric:
Filecoin mainnet has launched and many potential problems have been exposed, such as the aforementioned high pre-security problem, the storage resource waste and computing power monopoly caused by unreasonable sector encapsulation, and the harsh penalty mechanism, etc. These problems are quite serious, and will greatly affect the development of Filecoin ecology.
These problems are relatively serious, and will greatly affect the development of Filecoin ecology, here are two examples to illustrate. For example, the problem of big miners computing power monopoly, now after the big miners have monopolized computing power, there will be a very delicate state — — the miners save a file data with ordinary users. There is no way to verify this matter in the chain, whether what he saved is uploaded by himself or someone else. And after the big miners have monopolized computing power, there will be a very delicate state — — the miners will save a file data with ordinary users, there is no way to verify this matter in the chain, whether what he saved is uploaded by himself or someone else. Because I can fake another identity to upload data for myself, but that leads to the fact that for any miner I go to choose which data to save. I have only one goal, and that is to brush my computing power and how fast I can brush my computing power.
There is no difference between saving other people’s data and saving my own data in the matter of computing power. When I save someone else’s data, I don’t know that data. Somewhere in the world, the bandwidth quality between me and him may not be good enough.
The best option is to store my own local data, which makes sense, and that results in no one being able to store data on the chain at all. They only store their own data, because it’s the most economical for them, and the network has essentially no storage utility, no one is providing storage for the masses of retail users.
The harsh penalty mechanism will also severely deplete the miner’s profits, because DDOS attacks are actually a very common attack technique for the attacker, and for a big miner, he can get a very high profit in a short period of time if he attacks other customers, and this thing is a profitable thing for all big miners.
Now as far as the status quo is concerned, the vast majority of miners are actually not very well maintained, so they are not very well protected against these low-DDOS attacks. So the penalty regime is grim for them.
The contradiction between the unreasonable system and the demand will inevitably lead to the evolution of the system in a more reasonable direction, so there will be many forked projects that are more reasonable in terms of mechanism, thus attracting Filecoin miners and a diversion of storage power.
Since each project is in the field of decentralized storage track, the demand for miners is similar or even compatible with each other, so miners will tend to fork the projects with better economic benefits and business scenarios, so as to filter out the projects with real value on the ground.
For the chaotic FIL price, because FIL is also a project that has gone through several years, carrying too many expectations, so it can only be said that the current situation has its own reasons for existence. As for the reasonable price of FIL there is no way to make a prediction because in the long run, it is necessary to consider the commercialization of the project to land and the value of the actual chain of data. In other words, we need to keep observing whether Filecoin will become a game of computing power or a real value carrier.
Deep Chain Finance:
Leo, we just mentioned that the pre-collateral issue of Filecoin caused the dissatisfaction of miners, and after Filecoin launches on the main website, the second round of space race test coins were directly turned into real coins, and the official selling of FIL hit the market phenomenon, so many miners said they were betrayed. What I want to know is, EpiK’s main motto is “save the miners eliminated by Filecoin”, how to deal with the various problems of Filecoin, and how will EpiK achieve “save”?
Leo:
Originally Filecoin’s tacit approval of the computing power makeup behavior was to declare that the official directly chose to abandon the small miners. And this test coin turned real coin also hurt the interests of the loyal big miners in one cut, we do not know why these low-level problems, we can only regret.
EpiK didn’t do it to fork Filecoin, but because EpiK to build a shared knowledge graph ecology, had to integrate decentralized storage in, so the most hardcore Filecoin’s PoRep and PoSt decentralized verification technology was chosen. In order to ensure the quality of knowledge graph data, EpiK only allows community-voted field experts to upload data, so EpiK naturally prevents miners from making up computing power, and there is no reason for the data that has no value to take up such an expensive decentralized storage resource.
With the inability to make up computing power, the difference between big miners and small miners is minimal when the amount of knowledge graph data is small.
We can’t say that we can save the big miners, but we are definitely the optimal choice for the small miners who are currently in the market to be eliminated by Filecoin.
Deep Chain Finance:
Let me ask Eric: According to EpiK protocol, EpiK adopts the E2P model, which allows only experts in the field who are voted to upload their data. This is very different from Filecoin’s P2P model, which allows individuals to upload data as they wish. In your opinion, what are the advantages of the E2P model? If only voted experts can upload data, does that mean that the EpiK protocol is not available to everyone?
Eric:
First, let me explain the advantages of the E2P model over the P2P model.
There are five roles in the DAO ecosystem: miner, coin holder, field expert, bounty hunter and gateway. These five roles allocate the EPKs generated every day when the main network is launched.
The miner owns 75% of the EPKs, the field expert owns 9% of the EPKs, and the voting user shares 1% of the EPKs.
The other 15% of the EPK will fluctuate based on the daily traffic to the network, and the 15% is partly a game between the miner and the field expert.
The first describes the relationship between the two roles.
The first group of field experts are selected by the Foundation, who cover different areas of knowledge (a wide range of knowledge here, including not only serious subjects, but also home, food, travel, etc.) This group of field experts can recommend the next group of field experts, and the recommended experts only need to get 100,000 EPK votes to become field experts.
The field expert’s role is to submit high-quality data to the miner, who is responsible for encapsulating this data into blocks.
Network activity is judged by the amount of EPKs pledged by the entire network for daily traffic (1 EPK = 10 MB/day), with a higher percentage indicating higher data demand, which requires the miner to increase bandwidth quality.
If the data demand decreases, this requires field experts to provide higher quality data. This is similar to a library with more visitors needing more seats, i.e., paying the miner to upgrade the bandwidth.
When there are fewer visitors, more money is needed to buy better quality books to attract visitors, i.e., money for bounty hunters and field experts to generate more quality knowledge graph data. The game between miners and field experts is the most important game in the ecosystem, unlike the game between the authorities and big miners in the Filecoin ecosystem.
The game relationship between data producers and data storers and a more rational economic model will inevitably lead to an E2P model that generates stored on-chain data of much higher quality than the P2P model, and the quality of bandwidth for data access will be better than the P2P model, resulting in greater business value and better landing scenarios.
I will then answer the question of whether this means that the EpiK protocol will not be universally accessible to all.
The E2P model only qualifies the quality of the data generated and stored, not the roles in the ecosystem; on the contrary, with the introduction of the DAO model, the variety of roles introduced in the EpiK ecosystem (which includes the roles of ordinary people) is not limited. (Bounty hunters who can be competent in their tasks) gives roles and possibilities for how everyone can participate in the system in a more logical way.
For example, a miner with computing power can provide storage, a person with a certain domain knowledge can apply to become an expert (this includes history, technology, travel, comics, food, etc.), and a person willing to mark and correct data can become a bounty hunter.
The presence of various efficient support tools from the project owner will lower the barriers to entry for various roles, thus allowing different people to do their part in the system and together contribute to the ongoing generation of a high-quality decentralized knowledge graph.
Deep Chain Finance:
Leo, some time ago, EpiK released a white paper and an economy whitepaper, explaining the EpiK concept from the perspective of technology and economy model respectively. What I would like to ask is, what are the shortcomings of the current distributed storage projects, and how will EpiK protocol be improved?
Leo:
Distributed storage can easily be misunderstood as those of Ali’s OceanDB, but in the field of blockchain, we should focus on decentralized storage first.
There is a big problem with the decentralized storage on the market now, which is “why not eat meat porridge”.
How to understand it? Decentralized storage is cheaper than centralized storage because of its technical principle, and if it is, the centralized storage is too rubbish for comparison.
What incentive does the average user have to spend more money on decentralized storage to store data?
Is it safer?
Existence miners can shut down at any time on decentralized storage by no means save a share of security in Ariadne and Amazon each.
More private?
There’s no difference between encrypted presence on decentralized storage and encrypted presence on Amazon.
Faster?
The 10,000 gigabytes of bandwidth in decentralized storage simply doesn’t compare to the fiber in a centralized server room. This is the root problem of the business model, no one is using it, no one is buying it, so what’s the big vision.
The goal of EpiK is to guide all community participants in the co-construction and sharing of field knowledge graph data, which is the best way for robots to understand human knowledge, and the more knowledge graph data there is, the more knowledge a robot has, the more intelligent it is exponentially, i.e., EpiK uses decentralized storage technology. The value of exponentially growing data is captured with linearly growing hardware costs, and that’s where the buy-in for EPK comes in.
Organized data is worth a lot more than organized hard drives, and there is a demand for EPK when robots have the need for intelligence.
Deep Chain Finance:
Let me ask Leo, how many forked projects does Filecoin have so far, roughly? Do you think there will be more or less waves of fork after the mainnet launches? Have the requirements of the miners at large changed when it comes to participation?
Leo:
We don’t have specific statistics, now that the main network launches, we feel that forking projects will increase, there are so many restricted miners in the market that they need to be organized efficiently.
However, we currently see that most forked projects are simply modifying the parameters of Filecoin’s economy model, which is undesirable, and this level of modification can’t change the status quo of miners making up computing power, and the change to the market is just to make some of the big miners feel more comfortable digging up, which won’t help to promote the decentralized storage ecology to land.
We need more reasonable landing scenarios so that idle mining resources can be turned into effective productivity, pitching a 100x coin instead of committing to one Fomo sentiment after another.
Deep Chain Finance:
How far along is the EpiK Protocol project, Eric? What other big moves are coming in the near future?
Eric:
The development of the EpiK Protocol is divided into 5 major phases.
(a) Phase I testing of the network “Obelisk”.
Phase II Main Network 1.0 “Rosetta”.
Phase III Main Network 2.0 “Hammurabi”.
(a) The Phase IV Enrichment Knowledge Mapping Toolkit.
The fifth stage is to enrich the knowledge graph application ecology.
Currently in the first phase of testing network “Obelisk”, anyone can sign up to participate in the test network pre-mining test to obtain ERC20 EPK tokens, after the mainnet exchange on a one-to-one basis.
We have recently launched ERC20 EPK on Uniswap, you can buy and sell it freely on Uniswap or download our EpiK mobile wallet.
In addition, we will soon launch the EpiK Bounty platform, and welcome all community members to do tasks together to build the EpiK community. At the same time, we are also pushing forward the centralized exchange for token listing.
Users’ Questions
User 1:
Some KOLs said, Filecoin consumed its value in the next few years, so it will plunge, what do you think?
Eric:
First of all, the judgment of the market is to correspond to the cycle, not optimistic about the FIL first judgment to do is not optimistic about the economic model of the project, or not optimistic about the distributed storage track.
First of all, we are very confident in the distributed storage track and will certainly face a process of growth and decline, so as to make a choice for a better project.
Since the existing group of miners and the computing power already produced is fixed, and since EpiK miners and FIL miners are compatible, anytime miners will also make a choice for more promising and economically viable projects.
Filecoin consumes the value of the next few years this time, so it will plunge.
Regarding the market issues, the plunge is not a prediction, in the industry or to keep learning iteration and value judgment. Because up and down market sentiment is one aspect, there will be more very important factors. For example, the big washout in March this year, so it can only be said that it will slow down the development of the FIL community. But prices are indeed unpredictable.
User2:
Actually, in the end, if there are no applications and no one really uploads data, the market value will drop, so what are the landing applications of EpiK?
Leo: The best and most direct application of EpiK’s knowledge graph is the question and answer system, which can be an intelligent legal advisor, an intelligent medical advisor, an intelligent chef, an intelligent tour guide, an intelligent game strategy, and so on.
submitted by EpiK-Protocol to u/EpiK-Protocol [link] [comments]

Bitcoin Network Status Update Saturday, October 17, 2020

Status of the Bitcoin network as of Saturday, October 17, 2020 at 12:00:01 EST:

Total bitcoins: 18,519,821.044971
Height: 653,184
Difficulty: 19,298,087,186,262.609375
Statistics for the past 24 hours:
Number of blocks mined: 156
Total bitcoins output (amount sent): 2,125,259.562607
Total fees: 44.052392
Average time until block found: 9 minutes, 13 seconds
Estimated hashrate: 149,652,846,262.926483 gh/s
Current price: US$11,342.75
Data provided by Smartbit.com.au. Price data provided by Coinbase.com.
I am a bot. My commands | /crypto_bot | Message my creator | Source code
submitted by crypto_bot to Bitcoin [link] [comments]

Bitcoin Network Status Update Saturday, October 24, 2020

Status of the Bitcoin network as of Saturday, October 24, 2020 at 12:00:01 EST:

Total bitcoins: 18,525,746.044971
Height: 654,132
Difficulty: 19,997,335,994,446.109375
Statistics for the past 24 hours:
Number of blocks mined: 158
Total bitcoins output (amount sent): 2,383,967.837545
Total fees: 117.768921
Average time until block found: 9 minutes, 6 seconds
Estimated hashrate: 157,063,528,305.187439 gh/s
Current price: US$13,115.15
Data provided by Smartbit.com.au. Price data provided by Coinbase.com.
I am a bot. My commands | /crypto_bot | Message my creator | Source code
submitted by crypto_bot to Bitcoin [link] [comments]

Bitcoin Network Status Update Wednesday, October 21, 2020

Status of the Bitcoin network as of Wednesday, October 21, 2020 at 12:00:02 EST:

Total bitcoins: 18,523,133.544971
Height: 653,714
Difficulty: 19,997,335,994,446.109375
Statistics for the past 24 hours:
Number of blocks mined: 133
Total bitcoins output (amount sent): 4,190,543.524081
Total fees: 103.263316
Average time until block found: 10 minutes, 49 seconds
Estimated hashrate: 132,211,704,217.137268 gh/s
Current price: US$12,751.77
Data provided by Smartbit.com.au. Price data provided by Coinbase.com.
I am a bot. My commands | /crypto_bot | Message my creator | Source code
submitted by crypto_bot to Bitcoin [link] [comments]

Bitcoin Network Status Update Thursday, October 08, 2020

Status of the Bitcoin network as of Thursday, October 08, 2020 at 12:00:02 EST:

Total bitcoins: 18,511,414.794971
Height: 651,839
Difficulty: 19,298,087,186,262.609375
Statistics for the past 24 hours:
Number of blocks mined: 159
Total bitcoins output (amount sent): 2,099,020.596108
Total fees: 88.596272
Average time until block found: 9 minutes, 3 seconds
Estimated hashrate: 152,530,785,568.975098 gh/s
Current price: US$10,918.99
Data provided by Smartbit.com.au. Price data provided by Coinbase.com.
I am a bot. My commands | /crypto_bot | Message my creator | Source code
submitted by crypto_bot to Bitcoin [link] [comments]

Following Bitcoin’s Hash Rate Network Difficulty Is About to Set a New Mining Difficulty Explained [2019] Bitcoin Q&A: Why Can't Bitcoin Mining Difficulty Adjust a Little Quicker? CryptoCurrency Mining Difficulty Log Jan 21 2020 Hash Rates of Difficulty When will be the End Of Bitcoin Bear Market?  Bitcoin Hashrate and Difficulty reducing!

The Bitcoin network has a global block difficulty. Valid blocks must have a hash below this target. Mining pools also have a pool-specific share difficulty setting a lower limit for shares. How often does the network difficulty change? Every 2016 blocks. What is the formula for difficulty? difficulty = difficulty_1_target / current_target (target is a 256 bit number) difficulty_1_target can be ... Maximum, current and minimum difficulty []. Current difficulty can be found out by using Bitcoin command line 'getDifficulty'. Due to target function not having minimum value maximum difficulty can be calculated only approximately as following: maximum_target / 1 (as 0 would lead the equation to being infinitely big) which is an inconcievable number (~2 to the 224). As the Bitcoin network hashrate goes up - the BTC hashrate numbers get so large that abbreviations must be used. The abbreviations are SI derived units representing the number of hashes performed in a one second time frame. The current Bitcoin hashrate is 146.25 EH/s, representing the global Bitcoin network hashrate with a mining difficulty of 20.00 T at block height 654,160. View the Bitcoin ... The Bitcoin network has a global block difficulty. Valid blocks must have a hash below this target. Mining pools also have a pool-specific share difficulty setting a lower limit for shares. How often does the network difficulty change? See target. What is the formula for difficulty? difficulty = difficulty_1_target / current_target target is a 256 bit number. difficulty_1_target is the target ... The Bitcoin difficulty chart provides the current Bitcoin difficulty (BTC diff) target as well as a historical data graph visualizing Bitcoin mining difficulty chart values with BTC difficulty adjustments (both increases and decreases) defaulted to today with timeline options of 1 day, 1 week, 1 month, 3 months, 6 months, 1 year, 3 years, and all time

[index] [43694] [42257] [32803] [21908] [17221] [31434] [19766] [42356] [42683] [29668]

Following Bitcoin’s Hash Rate Network Difficulty Is About to Set a New

Bitcoin’s network difficulty, which regulates how fast blocks are mined, is expected to follow suit. Pseudonymous quantitative analyst “PlanB” said on the matter:This comes on the back of an ... Toward the later part of this video, I will touch on the fact that the Bitcoin Network Hashrate has been reducing and this reduces the Mining Difficulty. In fact the current difficulty reduction ... #Mining #Ethereum #Cryptocurrency Welcome to the 11th episode of CCMDL , January 21 2020 We go over talk a little about the difficulty of Ethereum , Bitcoin, Monero & LiteCoins difficulty for ... The Bitcoin mining difficulty currently adjusts roughly every 2 weeks, while on other chains mining difficulty adjusts much more often. Why? Why does Bitcoin... https://claymore-dual.github.io/diffi... The network automatically changes the difficulty level for Bitcoin mining to ensure the discovery of a new block every 10 minutes (600 seconds) by miners.

#